
98-008 Homework 3: egrep
Cooper Pierce cppierce@andrew.cmu.edu

Jack Duvall jrduvall@andrew.cmu.edu

Spring 2022

Overview
The goal of assignment is to apply what we’ve talked thus far in class, and start to apply it to a
larger problem, with some more involved existing code. It also involves IO, which you’ll likely use
in your project, as well as applying some of the topics, like traits, that we’ve discussed. A good
understanding of the standard library will also help! Documentation for the standard library can
be found at https://doc.rust-lang.org/std/ and is an invaluable resource.

egrep
In this assignment you’ll be implementing components of the utility egrep (this is the same as
grep -E, but aliased as one command—the regex format is a bit more sane than by default). Most
of your work will be to utilise the existing NFA based regex matching engine to actually interact
with command line input, and producing the corresponding output.

Basic Matching
To start with, you’ll need to implement the logic in main and some parts of Matcher to be able
to find matches in the first place. No need to worry about parsing patterns or writing an efficient
matching engine—we’ve done that for you! We suggest you write a function like

fn get_files<'a>(
files: impl Iterator<Item = &'a str>,

) -> Vec<io::Result<(&'a str, Box<dyn BufRead>)>> {
todo!()

}

In order to handle the input files, because we need to handle standard in.

If we’re ever given a file name of -, or no files are provided, we want to read input from standard
in instead. Other inputs after the pattern should be treated as relative paths, and you can read
from these directly. In the case of non-existent files or other IO related errors, you can print any
reasonable diagnostic, but you should exit with a non-zero exit code.

You will probably find File and stdin useful. Likewise, the Read and Write traits from the
standard library (or their buffered versions) are likely to be helpful reading.

Your program should essentially behave the same as your system’s install (sorry, Windows users;
perhaps consult andrew) of egrep. Specifically:

• Each matching line, and only these lines, should be written to standard output

• If more than one file argument appears, prefix each such line with the filename followed by
a colon

mailto:cppierce@andrew.cmu.edu
mailto:jrduvall@andrew.cmu.edu
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/std/fs/struct.File.html
https://doc.rust-lang.org/std/io/fn.stdin.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Write.html


Pierce; Duvall 98-008 S23

So if we ran egrep foo A B and both A and B contained one line each consisting of foo, then we’d
expect to see

A:foo
B:foo

Note that there’s no space after the colon!

You can assign standard input any reasonable name for the purpose of printing its filename.

Highlighting Matches
As an extension, now highlight the specific matching region! This involves a little bit more imple-
mentation in the Matcher, but as before, most of the work has already been done.

How you handle the printing here is up to you; the only requirement is that the match is bolded
and a different colour. We suggest the https://docs.rs/termion/latest/termion/ crate, but you can
use any crate you wish, or even handle the ANSI escape codes by hand (a bit ugly, but it works).
Note that we’ll be reviewing submissions in a Linux environment, so whatever you do has to work
for this, so if you’re on Windows don’t use something Windows only.

What you print should roughly correspond to the results for egrep --color, but as this is less
standard, it doesn’t need to be exact.

(Option) Further Extensions
If you want a bit more practice, there are several other extension you could make. Consider

• adding support for capture groups and flags for printing them

• increasing performance by using a faster string search algorithm (e.g., Aho-Corasick or KMP)
if we can convert the regex to a set of constant strings

• more syntax extensions to the regex syntax, like supporting rem,n syntax

Submitting
Submission will be on Gradescope. Gradescope will check for compilation, but we’ll be grading
the code by hand. Functionality will account for about 75% of the points, with style accounting
for the remainder.

You should submit a zip file containing the whole crate rooted at the directory where Cargo.toml
appears (e.g., run zip submission.zip Cargo.toml src/*) and upload that.

2


