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Reference Pitfalls
In many other languages with references (e.g., C++) there are a number of potential
pitfalls:

int main() {
auto v = std::vector<int>{1, 2, 3, 4};
auto &x = v[1];
v.push_back(5);
x = 0;
std::cout << v[1] << std::endl;
return 0;

}

What’s wrong?

By changing v, we invalidate the reference x!
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Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.
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Borrow Rules Prevent Mutable Aliasing
fn main() {

let mut v = vec![1, 2, 3, 4];
let x = &v[0];
v.push(5);
println!("{} == {}", x, v[0]);

}

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable
--> src/main.rs:4:13
|

3 | let x = &v[0];
| - immutable borrow occurs here

4 | v.push(5);
| ^^^^^^^^^ mutable borrow occurs here

5 | println!("{} == {}", x, v[0]);
| - immutable borrow later used here
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References: Pointers But Better

Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”

Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers
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Immutable References
&Ty

Only let you read
Any number can exist at one point, so long as there’s no mutable references to
the object at the same time.
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Immutable References: Example
let x: i32 = 5;
let x_ref: &i32 = &x;

// Ok: can have more than one immutable ref
let x_ref2: &i32 = &x;

// Immutable reference is Copy
let x_ref3: &i32 = x_ref;

// Ok: i32 is Copy---can "move out of" reference to one
let y: i32 = *x_ref;
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Mutable References
&mut Ty

Let you read and write
Can only be made if the underlying object is also mutable
Only one can exist at a time
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Mutable References: Example
let x: i32 = 5;

// Error: x isn't mut
let x_mut_ref: &mut i32 = &mut x;

let mut y: i32 = 6;
let y_mut_ref: &mut i32 = &mut y;

// Error: y_mut_ref
let y_mut_ref2: &mut i32 = &mut y;

// Error: mut ref isn't Copy
let y_mut_ref3: &mut i32 = y_mut_ref;
*y_mut_ref += 2;
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Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:

Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety
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void increment(void *n) {
*(int*)n += 1;

}

... but what if I wanted a version for shorts, longs, and so on?

#define increment(x) _Generic((x), \
short: incr_short, \
int: incr_int, \
long: incr_long, \
float: incr_f, \
long double: incr_ld)(x)
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Another try

fun 'a id (x : 'a) : 'a = x

Now, properly generic.

(and we only had to switch languages)

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 14 / 43



Another try

fun 'a id (x : 'a) : 'a = x

Now, properly generic. (and we only had to switch languages)

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 14 / 43



Outline
1 References/Borrowing

2 Genericity

3 (Unbounded) Parametric Polymorphism

4 Ad-hoc Polymorphism and Traits

5 Bounded Parametric Polymorphism
Trait Objects

6 Existential Types

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 15 / 43



In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}
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Aside: C++ Templates
template<typename T>
T id(T x) {

return x;
}

Similar, but not the same.
Both languages will “monomorphise” this, making a separate version of the
function for all of the types it’s used on.
But in Rust, we typecheck the whole function, not just instances.
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Ownership Semantics with Generic Functions
These are still the same as before:

If the type is Copy, then its copied.
Otherwise, its moved.

fn main() {
let x = 7;
let y = String::from("Hello!");
let z = id(x);
let w = id(y);
println!("{}, {}, {}, {}", x, y, z, w);

}
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Generic Data Structures
So we can be generic over data in our functions, but what about elsewhere?

struct Queue<T> {
in_stack: Vec<T>,
out_stack: Vec<T>,

}

enum Option<T> {
Some(T),
None,

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 19 / 43



Aside: Common Parametric Enums
enum Option<T> {

Some(T),
None,

}

enum Result<T, E> {
Ok(T),
Err(E),

}
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Lifetime Genericity: Functions
fn saxpy<'a, 'b>(

a: f32, x: &'a [f32], y: &'b mut [f32]
) -> &'b mut [f32] {

for (yi, xi) in y.iter_mut().zip(x) {
*yi = a * xi + *yi;

}
y

}
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Lifetime Genericity: Data
enum CopyOnWrite<'a, T> {

Borrowed(&'a T),
Owned(T),

}

struct Token<'a> {
range: (usize, usize),
text: &'a str,

}
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Lifetime Genericity: Data
enum CopyOnWrite<'a, T> { Borrowed(&'a T), Owned(T), }

impl<'a, T> CopyOnWrite<'a, T> {
fn to_mut(&mut self) -> &mut T {

match self {
Self::Borrowed(&b) => {

*self = Self::Owned(b);
self.to_mut()

}
Self::Owned(b) => b,

}
}

}
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Trait Bound Preview
enum CopyOnWrite<'a, T> { Borrowed(&'a T), Owned(T), }

impl<'a, T: Copy> CopyOnWrite<'a, T> {
fn to_mut(&mut self) -> &mut T {

match self {
Self::Borrowed(&b) => {

*self = Self::Owned(b);
self.to_mut()

}
Self::Owned(b) => b,

}
}

}
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Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses
ML—modules
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Traits
In Rust, we use a Trait for this.

trait PartialEq {
fn eq(&self, other: &Self) -> bool;

}

trait Bounds {
fn min() -> Self; // Note the capitalisation!

fn max() -> Self;
}
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Implementing a Trait
Types can then implement traits:

impl PartialEq for (i32, i32) {
fn eq(&self, other: &Self) -> bool {

self.0 == other.0 && self.1 == other.1
}

}

impl Bounds for u8 {
fn min() -> u8 { 0 }
fn max() -> u8 { 255 }

}
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Aside: Derive for Implementing Traits
Oftentimes we avoid this for common, boilerplate heavy traits using an “attribute
macro”1.

#[derive(Debug, PartialEq, Eq)]
struct Person {

name: String,
age: u8,

}

Derivable traits include: Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy,
Hash, and more.

1we’ll revisit this in more depth after spring break
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Using Trait Implementations
Using a trait implementations is as simple as ensuring the trait is in scope, and just
calling the method.

trait ToString { fn to_string(&self) -> String; }
impl ToString for i32 { /* omitted */ }

fn main() {
let s = 7.to_string();
println!("{}", s);

}
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Default Implementations
Traits can also include default implementations for their items

enum SeekFrom { Start(u64), End(i64), Current(i64), }

/// This trait provides a cursor which can be moved
/// within a stream of bytes.
trait Seek {

fn seek(&mut self, pos: SeekFrom) -> Result<(), u64>;
fn rewind(&mut self) -> Result<(), ()> {

match self.seek(SeekFrom::Start(0)) {
Ok(_) => Ok(()),
Err(_) => Err(()),

}
}

}
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Type Parameters for Traits
And much like types, Traits can have type parameters

trait From<T> {
fn from(T) -> Self;

}

impl From<u8> for i32 { fn from(x: u8) -> i32 { x as i32 } }
impl From<u16> for i32 { fn from(x: u16) -> i32 { x as i32 } }
impl From<i8> for i32 { fn from(x: i8) -> i32 { x as i32 } }
impl From<i16> for i32 { fn from(x: i16) -> i32 { x as i32 } }
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Associated Types
trait Iterator {

type Item;

fn next(&mut self) -> Option<Self::Item>;

fn nth(&mut self, n: usize) -> Option<Self::Item> {
for _ in 0..n {

self.next()?;
}
self.next()

}
}

Note that we can only implement this once for a given type, with some fixed type for
Item—if many possible types make sense, we should use a type parameter.
Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 33 / 43



Outline
1 References/Borrowing

2 Genericity

3 (Unbounded) Parametric Polymorphism

4 Ad-hoc Polymorphism and Traits

5 Bounded Parametric Polymorphism
Trait Objects

6 Existential Types

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 34 / 43



Genericity with Trait Bounds
We can use traits as bounds for our type parameters!

fn find_diff<'a, 'b, T: Eq>(
xs: &'a [T], ys: &'b [T]

) -> Option<(&'a T, &'b T)> {
for (x, y) in xs.iter().zip(ys) {

if x != y { return Some((x, y)); }
}
None

}
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Aside: Lifetime Subtyping
fn find_same<'a, T: Eq>(xs: &'a [T], ys: &'a [T]) -> Option<&'a T> {

for (x, y) in xs.iter().zip(ys) {
if x == y {

return Some(x);
}

}
None

}

Can I use this on any two slices? Do they have to have the exact same lifetime?

No—they can have different ones, and 'a will be the “shared” lifetime.
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Verbose Bounds
Sometimes there can be quite a few constraints, or some complex combination:

fn double<T>(x: T) -> T
where

T: Add<T, Output = T> + Copy,
{

x + x
}
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Trait Objects: dyn
When we use traits in a type parameter bound, we’re still monomorphising. What if we
want dynamic dispatch?

trait Button {
fn on_click(&self, s: State) -> State;

}

fn handle_click_events(
clicked: &[Box<dyn Button>], mut s: State

) -> State {
for b in clicked {

s = b.on_click(s);
}
s

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 38 / 43



Trait Objects: dyn
When we use traits in a type parameter bound, we’re still monomorphising. What if we
want dynamic dispatch?

trait Button {
fn on_click(&self, s: State) -> State;

}

fn handle_click_events(
clicked: &[Box<dyn Button>], mut s: State

) -> State {
for b in clicked {

s = b.on_click(s);
}
s

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 38 / 43



Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]
dyn Trait
str (like [u8] but UTF-8)

If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...
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As a return type
Sometimes we might want to return a specific type which implements a trait, but don’t
want users of our function to know:

enum Tree<T> { Leaf(T), Node(Box<Tree<T>>, T, Box<Tree<T>>) }

struct Leaves { /* omitted */ }
impl Iterator for Leaves { /* omitted */ }

fn leaf_values<T>(tree: &Tree<T>) -> impl Iterator<Item = &T> {
Leaves { tree, current: tree.leftmost() };

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 41 / 43



As a argument’s type
This will end up being equivalent to a bound on a type parameter:

fn use_fn<T, U>(x: T, f: impl Fn(T) -> U) -> U {
f(x)

}

is the same as

fn use_fn<T, U, F: Fn (T) -> U>(x: T, f: F) -> U {
f(x)

}

((∃x.P (x)) → Q) ⇐⇒ (∀x. (P (x) → Q))
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Homework
Homework 2 going out likely tomorrow.

“Due” in a fortnight.
More complex starter code than last time
Some later portions touch on next week’s content—see writeup
Ask questions on Discord
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