
Polymorphism in Rust
Traits and Big Lambda

Cooper Pierce & Jack Duvall

Attendance

https://forms.gle/5PUkdaptpBgMyXrg6

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 1 / 43

https://forms.gle/5PUkdaptpBgMyXrg6

Outline
1 References/Borrowing

2 Genericity

3 (Unbounded) Parametric Polymorphism

4 Ad-hoc Polymorphism and Traits

5 Bounded Parametric Polymorphism
Trait Objects

6 Existential Types

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 2 / 43

Reference Pitfalls
In many other languages with references (e.g., C++) there are a number of potential
pitfalls:

int main() {
auto v = std::vector<int>{1, 2, 3, 4};
auto &x = v[1];
v.push_back(5);
x = 0;
std::cout << v[1] << std::endl;
return 0;

}

What’s wrong?

By changing v, we invalidate the reference x!

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 3 / 43

Reference Pitfalls
In many other languages with references (e.g., C++) there are a number of potential
pitfalls:

int main() {
auto v = std::vector<int>{1, 2, 3, 4};
auto &x = v[1];
v.push_back(5);
x = 0;
std::cout << v[1] << std::endl;
return 0;

}

What’s wrong?
By changing v, we invalidate the reference x!

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 3 / 43

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 4 / 43

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.

There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 4 / 43

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.

When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 4 / 43

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).

You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 4 / 43

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...

... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 4 / 43

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 4 / 43

Borrow Rules Prevent Mutable Aliasing
fn main() {

let mut v = vec![1, 2, 3, 4];
let x = &v[0];
v.push(5);
println!("{} == {}", x, v[0]);

}

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable
--> src/main.rs:4:13
|

3 | let x = &v[0];
| - immutable borrow occurs here

4 | v.push(5);
| ^^^^^^^^^ mutable borrow occurs here

5 | println!("{} == {}", x, v[0]);
| - immutable borrow later used here

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 5 / 43

Borrow Rules Prevent Mutable Aliasing
fn main() {

let mut v = vec![1, 2, 3, 4];
let x = &v[0];
v.push(5);
println!("{} == {}", x, v[0]);

}

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable
--> src/main.rs:4:13
|

3 | let x = &v[0];
| - immutable borrow occurs here

4 | v.push(5);
| ^^^^^^^^^ mutable borrow occurs here

5 | println!("{} == {}", x, v[0]);
| - immutable borrow later used here

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 5 / 43

References: Pointers But Better

Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”

Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 6 / 43

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 6 / 43

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”

Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 6 / 43

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)

Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 6 / 43

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 6 / 43

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 6 / 43

Immutable References
&Ty

Only let you read
Any number can exist at one point, so long as there’s no mutable references to
the object at the same time.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 7 / 43

Immutable References: Example
let x: i32 = 5;
let x_ref: &i32 = &x;

// Ok: can have more than one immutable ref
let x_ref2: &i32 = &x;

// Immutable reference is Copy
let x_ref3: &i32 = x_ref;

// Ok: i32 is Copy---can "move out of" reference to one
let y: i32 = *x_ref;

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 8 / 43

Mutable References
&mut Ty

Let you read and write
Can only be made if the underlying object is also mutable
Only one can exist at a time

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 9 / 43

Mutable References: Example
let x: i32 = 5;

// Error: x isn't mut
let x_mut_ref: &mut i32 = &mut x;

let mut y: i32 = 6;
let y_mut_ref: &mut i32 = &mut y;

// Error: y_mut_ref
let y_mut_ref2: &mut i32 = &mut y;

// Error: mut ref isn't Copy
let y_mut_ref3: &mut i32 = y_mut_ref;
*y_mut_ref += 2;

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 10 / 43

Outline
1 References/Borrowing

2 Genericity

3 (Unbounded) Parametric Polymorphism

4 Ad-hoc Polymorphism and Traits

5 Bounded Parametric Polymorphism
Trait Objects

6 Existential Types

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 11 / 43

Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:

Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 12 / 43

Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:

Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 12 / 43

Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:

Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 12 / 43

Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:
Can only portably use pointers (often violated)

Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 12 / 43

Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:
Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...

No type-safety

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 12 / 43

Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:
Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 12 / 43

void increment(void *n) {
(int)n += 1;

}

... but what if I wanted a version for shorts, longs, and so on?

#define increment(x) _Generic((x), \
short: incr_short, \
int: incr_int, \
long: incr_long, \
float: incr_f, \
long double: incr_ld)(x)

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 13 / 43

void increment(void *n) {
(int)n += 1;

}

... but what if I wanted a version for shorts, longs, and so on?

#define increment(x) _Generic((x), \
short: incr_short, \
int: incr_int, \
long: incr_long, \
float: incr_f, \
long double: incr_ld)(x)

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 13 / 43

void increment(void *n) {
(int)n += 1;

}

... but what if I wanted a version for shorts, longs, and so on?

#define increment(x) _Generic((x), \
short: incr_short, \
int: incr_int, \
long: incr_long, \
float: incr_f, \
long double: incr_ld)(x)

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 13 / 43

Another try

fun 'a id (x : 'a) : 'a = x

Now, properly generic.

(and we only had to switch languages)

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 14 / 43

Another try

fun 'a id (x : 'a) : 'a = x

Now, properly generic. (and we only had to switch languages)

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 14 / 43

Outline
1 References/Borrowing

2 Genericity

3 (Unbounded) Parametric Polymorphism

4 Ad-hoc Polymorphism and Traits

5 Bounded Parametric Polymorphism
Trait Objects

6 Existential Types

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 15 / 43

In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 16 / 43

In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 16 / 43

In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 16 / 43

In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 16 / 43

Aside: C++ Templates
template<typename T>
T id(T x) {

return x;
}

Similar, but not the same.
Both languages will “monomorphise” this, making a separate version of the
function for all of the types it’s used on.
But in Rust, we typecheck the whole function, not just instances.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 17 / 43

Ownership Semantics with Generic Functions
These are still the same as before:

If the type is Copy, then its copied.
Otherwise, its moved.

fn main() {
let x = 7;
let y = String::from("Hello!");
let z = id(x);
let w = id(y);
println!("{}, {}, {}, {}", x, y, z, w);

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 18 / 43

Generic Data Structures
So we can be generic over data in our functions, but what about elsewhere?

struct Queue<T> {
in_stack: Vec<T>,
out_stack: Vec<T>,

}

enum Option<T> {
Some(T),
None,

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 19 / 43

Aside: Common Parametric Enums
enum Option<T> {

Some(T),
None,

}

enum Result<T, E> {
Ok(T),
Err(E),

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 20 / 43

Lifetime Genericity: Functions
fn saxpy<'a, 'b>(

a: f32, x: &'a [f32], y: &'b mut [f32]
) -> &'b mut [f32] {

for (yi, xi) in y.iter_mut().zip(x) {
*yi = a * xi + *yi;

}
y

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 21 / 43

Lifetime Genericity: Data
enum CopyOnWrite<'a, T> {

Borrowed(&'a T),
Owned(T),

}

struct Token<'a> {
range: (usize, usize),
text: &'a str,

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 22 / 43

Lifetime Genericity: Data
enum CopyOnWrite<'a, T> {

Borrowed(&'a T),
Owned(T),

}

struct Token<'a> {
range: (usize, usize),
text: &'a str,

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 22 / 43

Lifetime Genericity: Data
enum CopyOnWrite<'a, T> { Borrowed(&'a T), Owned(T), }

impl<'a, T> CopyOnWrite<'a, T> {
fn to_mut(&mut self) -> &mut T {

match self {
Self::Borrowed(&b) => {

*self = Self::Owned(b);
self.to_mut()

}
Self::Owned(b) => b,

}
}

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 23 / 43

Trait Bound Preview
enum CopyOnWrite<'a, T> { Borrowed(&'a T), Owned(T), }

impl<'a, T: Copy> CopyOnWrite<'a, T> {
fn to_mut(&mut self) -> &mut T {

match self {
Self::Borrowed(&b) => {

*self = Self::Owned(b);
self.to_mut()

}
Self::Owned(b) => b,

}
}

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 24 / 43

Outline
1 References/Borrowing

2 Genericity

3 (Unbounded) Parametric Polymorphism

4 Ad-hoc Polymorphism and Traits

5 Bounded Parametric Polymorphism
Trait Objects

6 Existential Types

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 25 / 43

Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses
ML—modules

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 26 / 43

Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces

Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses
ML—modules

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 26 / 43

Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes

C++20—concepts
Haskell—typeclasses
ML—modules

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 26 / 43

Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts

Haskell—typeclasses
ML—modules

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 26 / 43

Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses

ML—modules

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 26 / 43

Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses
ML—modules

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 26 / 43

Traits
In Rust, we use a Trait for this.

trait PartialEq {
fn eq(&self, other: &Self) -> bool;

}

trait Bounds {
fn min() -> Self; // Note the capitalisation!

fn max() -> Self;
}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 27 / 43

Traits
In Rust, we use a Trait for this.

trait PartialEq {
fn eq(&self, other: &Self) -> bool;

}

trait Bounds {
fn min() -> Self; // Note the capitalisation!

fn max() -> Self;
}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 27 / 43

Traits
In Rust, we use a Trait for this.

trait PartialEq {
fn eq(&self, other: &Self) -> bool;

}

trait Bounds {
fn min() -> Self; // Note the capitalisation!

fn max() -> Self;
}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 27 / 43

Implementing a Trait
Types can then implement traits:

impl PartialEq for (i32, i32) {
fn eq(&self, other: &Self) -> bool {

self.0 == other.0 && self.1 == other.1
}

}

impl Bounds for u8 {
fn min() -> u8 { 0 }
fn max() -> u8 { 255 }

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 28 / 43

Aside: Derive for Implementing Traits
Oftentimes we avoid this for common, boilerplate heavy traits using an “attribute
macro”1.

#[derive(Debug, PartialEq, Eq)]
struct Person {

name: String,
age: u8,

}

Derivable traits include: Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy,
Hash, and more.

1we’ll revisit this in more depth after spring break
Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 29 / 43

Using Trait Implementations
Using a trait implementations is as simple as ensuring the trait is in scope, and just
calling the method.

trait ToString { fn to_string(&self) -> String; }
impl ToString for i32 { /* omitted */ }

fn main() {
let s = 7.to_string();
println!("{}", s);

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 30 / 43

Default Implementations
Traits can also include default implementations for their items

enum SeekFrom { Start(u64), End(i64), Current(i64), }

/// This trait provides a cursor which can be moved
/// within a stream of bytes.
trait Seek {

fn seek(&mut self, pos: SeekFrom) -> Result<(), u64>;
fn rewind(&mut self) -> Result<(), ()> {

match self.seek(SeekFrom::Start(0)) {
Ok(_) => Ok(()),
Err(_) => Err(()),

}
}

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 31 / 43

Type Parameters for Traits
And much like types, Traits can have type parameters

trait From<T> {
fn from(T) -> Self;

}

impl From<u8> for i32 { fn from(x: u8) -> i32 { x as i32 } }
impl From<u16> for i32 { fn from(x: u16) -> i32 { x as i32 } }
impl From<i8> for i32 { fn from(x: i8) -> i32 { x as i32 } }
impl From<i16> for i32 { fn from(x: i16) -> i32 { x as i32 } }

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 32 / 43

Associated Types
trait Iterator {

type Item;

fn next(&mut self) -> Option<Self::Item>;

fn nth(&mut self, n: usize) -> Option<Self::Item> {
for _ in 0..n {

self.next()?;
}
self.next()

}
}

Note that we can only implement this once for a given type, with some fixed type for
Item—if many possible types make sense, we should use a type parameter.
Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 33 / 43

Outline
1 References/Borrowing

2 Genericity

3 (Unbounded) Parametric Polymorphism

4 Ad-hoc Polymorphism and Traits

5 Bounded Parametric Polymorphism
Trait Objects

6 Existential Types

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 34 / 43

Genericity with Trait Bounds
We can use traits as bounds for our type parameters!

fn find_diff<'a, 'b, T: Eq>(
xs: &'a [T], ys: &'b [T]

) -> Option<(&'a T, &'b T)> {
for (x, y) in xs.iter().zip(ys) {

if x != y { return Some((x, y)); }
}
None

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 35 / 43

Aside: Lifetime Subtyping
fn find_same<'a, T: Eq>(xs: &'a [T], ys: &'a [T]) -> Option<&'a T> {

for (x, y) in xs.iter().zip(ys) {
if x == y {

return Some(x);
}

}
None

}

Can I use this on any two slices? Do they have to have the exact same lifetime?

No—they can have different ones, and 'a will be the “shared” lifetime.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 36 / 43

Aside: Lifetime Subtyping
fn find_same<'a, T: Eq>(xs: &'a [T], ys: &'a [T]) -> Option<&'a T> {

for (x, y) in xs.iter().zip(ys) {
if x == y {

return Some(x);
}

}
None

}

Can I use this on any two slices? Do they have to have the exact same lifetime?
No—they can have different ones, and 'a will be the “shared” lifetime.

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 36 / 43

Verbose Bounds
Sometimes there can be quite a few constraints, or some complex combination:

fn double<T>(x: T) -> T
where

T: Add<T, Output = T> + Copy,
{

x + x
}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 37 / 43

Trait Objects: dyn
When we use traits in a type parameter bound, we’re still monomorphising. What if we
want dynamic dispatch?

trait Button {
fn on_click(&self, s: State) -> State;

}

fn handle_click_events(
clicked: &[Box<dyn Button>], mut s: State

) -> State {
for b in clicked {

s = b.on_click(s);
}
s

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 38 / 43

Trait Objects: dyn
When we use traits in a type parameter bound, we’re still monomorphising. What if we
want dynamic dispatch?

trait Button {
fn on_click(&self, s: State) -> State;

}

fn handle_click_events(
clicked: &[Box<dyn Button>], mut s: State

) -> State {
for b in clicked {

s = b.on_click(s);
}
s

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 38 / 43

Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]
dyn Trait
str (like [u8] but UTF-8)

If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 39 / 43

Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]

dyn Trait
str (like [u8] but UTF-8)

If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 39 / 43

Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]
dyn Trait

str (like [u8] but UTF-8)
If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 39 / 43

Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]
dyn Trait
str (like [u8] but UTF-8)

If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 39 / 43

Outline
1 References/Borrowing

2 Genericity

3 (Unbounded) Parametric Polymorphism

4 Ad-hoc Polymorphism and Traits

5 Bounded Parametric Polymorphism
Trait Objects

6 Existential Types

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 40 / 43

As a return type
Sometimes we might want to return a specific type which implements a trait, but don’t
want users of our function to know:

enum Tree<T> { Leaf(T), Node(Box<Tree<T>>, T, Box<Tree<T>>) }

struct Leaves { /* omitted */ }
impl Iterator for Leaves { /* omitted */ }

fn leaf_values<T>(tree: &Tree<T>) -> impl Iterator<Item = &T> {
Leaves { tree, current: tree.leftmost() };

}

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 41 / 43

As a argument’s type
This will end up being equivalent to a bound on a type parameter:

fn use_fn<T, U>(x: T, f: impl Fn(T) -> U) -> U {
f(x)

}

is the same as

fn use_fn<T, U, F: Fn (T) -> U>(x: T, f: F) -> U {
f(x)

}

((∃x.P (x)) → Q) ⇐⇒ (∀x. (P (x) → Q))

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 42 / 43

Homework
Homework 2 going out likely tomorrow.

“Due” in a fortnight.
More complex starter code than last time
Some later portions touch on next week’s content—see writeup
Ask questions on Discord

Cooper Pierce & Jack Duvall Polymorphism in Rust 1st February 2023 43 / 43

	References/Borrowing
	Genericity
	(Unbounded) Parametric Polymorphism
	Ad-hoc Polymorphism and Traits
	Bounded Parametric Polymorphism
	Trait Objects

	Existential Types

