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Recall: Ownership Rules

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped”.
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.
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What’s A Lifetime?

Lifetime: “For a reference, the span of time that it can be used to accessed the
underling value”
Some subsection of the duration we can use the owning variable
Construct of Rust’s borrow checker, not checked at runtime!
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Lifetimes Roughly Correspond To Scope
// Error: x isn't in scope
let x_ref1 = &x;

let x = String::from("hello");

let x_ref2 = &x;
take_ownership(x);

// Error: x was moved
let x_ref3 = &x;
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Recall: Returning An Invalid Reference
fn make_string() -> &String {

let s = String::from("hello");
&s

}

Scope of s is the function body of make_string, which is the same as its lifetime
Compiler knows lifetime of make_string will end once it returns, so reference
won’t be valid
(but first we’d run into an issue about what lifetime the returned reference would
have)
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Fixing The Example

Just don’t return a reference! Move semantics already avoid copying things on the
heap when not necessary1

fn make_string() -> String {
String::from("hello")

}

1and the compiler will automatically determine if it’s faster to pass pointer to output struct or pass
via registers
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Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word.
The 'static lifetime is special: denotes “will be valid until the program
terminates”
Not super common to need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums
Other, more funky functions
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Explicit Lifetimes In Structs
struct Vertex<'a> {

edges: Vec<&'a Edge<'a>>,
}
struct Edge<'a> {

info: EdgeInfo,
vertex: &'a Vertex<'a>,

}
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Explicit Lifetimes In Function Signatures
fn bfs<'a>(

start_vertex: &'a Vertex<'a>,
max_depth: usize,

) -> Vec<&'a Vertex<'a>> {
...

}
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Returning An Invalid Reference Revisited
fn make_string<'a>() -> &'a String {

let s = String::from("hello");
&s

}

The same underlying issue as before, made more obvious by the lifetime annotation.
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Rules For Lifetimes In Function Signatures
(From https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html) Function
signatures follow these rules:

Any reference must have an annotated lifetime
Any reference being returned must have the same lifetime as an input, or be
'static

fn f1<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
// what goes here?

}

fn f2<'a, 'b>(x: &'a i32) -> &'b i32 {
// what goes here?

}
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Lifetime Elison
Certain patterns in Rust are very common:

// One input lifetime, return value is reference
fn f3<'a>(x: &'a i32) -> &'a i32 { ... }
// Multiple input lifetimes, return value is not reference
fn f4<'a, 'b, 'c>(x: &'a i32, y: &'b i32, z: &'c i32) -> i32 { ... }

So if a function signature falls into one of these patterns, you don’t have to explicitly
write lifetimes for it!

fn g3(x: &i32) -> &i32 { ... }
fn g4(x: &i32, y: &i32, z: &i32) -> i32 { ... }
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Lifetime Elison Example
fn make_string(allocator: &mut Vec<String>) -> &String {

allocator.push(String::from("hello"));
&allocator[allocator.len() - 1]

}

Input and output lifetimes elided to be the same
Valid reference returned via reference to original data
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Sidenote: Loop Labels
'outer: for y in 0..5 {

'inner: for x in 0..5 {
if arr1[y][x] { break 'outer; }
if arr2[x][y] { break 'inner; }

}
}

Loop labels are not lifetimes—same syntax as lifetimes, and same sort of scope idea,
but you can’t actually make references with these names and have it make sense
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What Is A Module?

“A bag of things that go together”

Structs, Enums
Types, Traits
Constants, Static members,
Other modules!

Defines a namespace
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Modules Within a File
fn f() { ... }
mod foo {

fn f() { ... }
}
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Directory Structure Is Module Structure
src/
├── lib.rs
└── bar/

├── mod.rs (bar)
├── baz.rs (bar::baz)
└── qux.rs (bar::qux)

Alternatively,
src/
├── lib.rs
├── bar.rs (bar)
└── bar/

├── baz.rs (bar::baz)
└── qux.rs (bar::qux)
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Declaring File Modules
// In src/lib.rs:
mod bar;

// In the `bar` module:
mod baz;
mod qux;
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Visibility

By default, everything in a module is private to that module
We need to explicitly declare items as public using the pub keyword:

pub struct Foo {
x: usize,
pub y: usize,

}
pub enum Bar {

Bar1,
Bar2,

}
pub fn calculate(f: Foo) -> Bar { ... }

pub mod baz;
mod qux;
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Using Modules
mod foo {

fn f() { ... }
}
fn main() {

foo::f();
}

Alternatively,

use foo::f;
fn main() {

f();
}
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Using Multiple Things At Once
use bar::{g, baz::h};

use qux::*;

Useful for re-exports, collecting all useful includes into one “prelude”:

pub use crate::{
bar::{g, baz::h},
qux::*,

};
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What Are Function Types?

Every value has a type
Functions are values! (sorry 15-122 stans)
Allows us to pass in functions as arguments to other functions, which many other
good languages do in some capacity
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Rust’s Function Types

Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty
Types Implementing Function Traits:

Fn
FnOnce
FnMut
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What Is A Function Pointer?
Value of the function pointer type is either:

A “function item” (named function in the code), or
A closure that doesn’t capture (which is effectively the same)
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Example: Using A Function Pointer
fn double(n: i32) -> i32 { 2 * n }
fn giveme_fnptr(f: fn(i32) -> i32) -> i32 {

f(42)
}
fn test_fnptr() {

assert_eq!(giveme_fnptr(double), 84);
}
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Closure Syntax
From https://doc.rust-lang.org/book/ch13-01-closures.html

fn add_one_v1 (x: i32) -> i32 { x + 1 }
let add_one_v2 = |x: i32| -> i32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 29 / 45

https://doc.rust-lang.org/book/ch13-01-closures.html


Capturing State With Closures
If variable typed inside closure came from outside the closure, it is captured by
reference

Immutable if possible, mutable if necessary

let z = 5;
let closure = |x| z == x;

This can’t be done with functions! Will fail to compile:

fn f(x: i32) -> bool { z == x }
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Consuming State With Closures
Sometimes, we do want to move a value into a closure:

let message = String::from("hello");
thread::spawn(move || {

println!("{}", message);
});

move keyword: anything that would be captured by reference is now captured by value
(moved)
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Things Closures Can’t Be
Recursive
Generic
In most cases, function pointers

If a closure doesn’t capture anything from its environment, it can be coerced to a
function pointer:

let x: fn(i32, i32) -> i32 = |x, y| x + y;
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Type Of A Closure

You can’t write down their type!
Wait, so how can we take them as arguments??
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Traits Aren’t Types

Types: correspond to the compiler’s representation of data
Traits: describe what a type can do
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Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference
Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn
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Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}
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FnMut Trait
let mut state = 0;
let fnmut_closure = |x| {

state += x;
state

};

Can be called by mutable reference
Closure must not move any captured state out
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Example: Using FnMut
fn giveme_fnmut(mut f: impl FnMut(i32) -> i32) -> i32 {

let x = f(42);
f(x)

}
assert_eq!(giveme_fnmut(fnmut_closure), 84);
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FnOnce Trait
let state = Box::new(42);
let fnonce_closure = move |x| {

let y = x + *state;
drop(state);
y

};

Can be called by taking ownership of the closure
All closures implement this
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Example: Using FnOnce
fn giveme_fnonce(f: impl FnOnce(i32) -> i32) -> i32 {

let x = f(42);
// let y = f(9 * 6); // Does not compile
x

}
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Why Are There So Many Different Traits??

Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”
FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”
FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list
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Manually Implementing Function Traits?
Unfortunately, only on nightly, a.k.a. “unstable” Rust. Only closures will implement
these traits for now.
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https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=b15b299a2a1f7c179588fa99b7c749d4


Next Time
Livecoding!!
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Homework: What We Meant To Give You Last
Time
Tarball: https://rust-stuco.github.io/handouts/TODO-handout.tgz
Handout PDF: https://rust-stuco.github.io/handouts/TODO-writeup.pdf
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