
Lifetimes, Function Types &
More Ownership

Cooper Pierce & Jack Duvall

Outline

1 Lifetimes

2 Modules

3 Function Types

4 Closures

5 Function Traits

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 1 / 45

Recall: Ownership Rules

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped”.
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 2 / 45

Recall: Ownership Rules
Every value has an “owner”.

There can only be one owner.
When ownership of the value ends, the value will be “dropped”.
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 2 / 45

Recall: Ownership Rules
Every value has an “owner”.
There can only be one owner.

When ownership of the value ends, the value will be “dropped”.
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 2 / 45

Recall: Ownership Rules
Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped”.

You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 2 / 45

Recall: Ownership Rules
Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped”.
You can have as many shared borrows (&) as you want, all at the same time ...

... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 2 / 45

Recall: Ownership Rules
Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped”.
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 2 / 45

Recall: Ownership Rules
Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped”.
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 2 / 45

What’s A Lifetime?

Lifetime: “For a reference, the span of time that it can be used to accessed the
underling value”
Some subsection of the duration we can use the owning variable
Construct of Rust’s borrow checker, not checked at runtime!

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 3 / 45

What’s A Lifetime?
Lifetime: “For a reference, the span of time that it can be used to accessed the
underling value”

Some subsection of the duration we can use the owning variable
Construct of Rust’s borrow checker, not checked at runtime!

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 3 / 45

What’s A Lifetime?
Lifetime: “For a reference, the span of time that it can be used to accessed the
underling value”
Some subsection of the duration we can use the owning variable

Construct of Rust’s borrow checker, not checked at runtime!

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 3 / 45

What’s A Lifetime?
Lifetime: “For a reference, the span of time that it can be used to accessed the
underling value”
Some subsection of the duration we can use the owning variable
Construct of Rust’s borrow checker, not checked at runtime!

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 3 / 45

Lifetimes Roughly Correspond To Scope
// Error: x isn't in scope
let x_ref1 = &x;

let x = String::from("hello");

let x_ref2 = &x;
take_ownership(x);

// Error: x was moved
let x_ref3 = &x;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 4 / 45

Recall: Returning An Invalid Reference
fn make_string() -> &String {

let s = String::from("hello");
&s

}

Scope of s is the function body of make_string, which is the same as its lifetime
Compiler knows lifetime of make_string will end once it returns, so reference
won’t be valid
(but first we’d run into an issue about what lifetime the returned reference would
have)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 5 / 45

Recall: Returning An Invalid Reference
fn make_string() -> &String {

let s = String::from("hello");
&s

}

Scope of s is the function body of make_string, which is the same as its lifetime

Compiler knows lifetime of make_string will end once it returns, so reference
won’t be valid
(but first we’d run into an issue about what lifetime the returned reference would
have)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 5 / 45

Recall: Returning An Invalid Reference
fn make_string() -> &String {

let s = String::from("hello");
&s

}

Scope of s is the function body of make_string, which is the same as its lifetime
Compiler knows lifetime of make_string will end once it returns, so reference
won’t be valid

(but first we’d run into an issue about what lifetime the returned reference would
have)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 5 / 45

Recall: Returning An Invalid Reference
fn make_string() -> &String {

let s = String::from("hello");
&s

}

Scope of s is the function body of make_string, which is the same as its lifetime
Compiler knows lifetime of make_string will end once it returns, so reference
won’t be valid
(but first we’d run into an issue about what lifetime the returned reference would
have)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 5 / 45

Fixing The Example

Just don’t return a reference! Move semantics already avoid copying things on the
heap when not necessary1

fn make_string() -> String {
String::from("hello")

}

1and the compiler will automatically determine if it’s faster to pass pointer to output struct or pass
via registers

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 6 / 45

Fixing The Example
Just don’t return a reference! Move semantics already avoid copying things on the
heap when not necessary1

fn make_string() -> String {
String::from("hello")

}

1and the compiler will automatically determine if it’s faster to pass pointer to output struct or pass
via registers

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 6 / 45

Fixing The Example
Just don’t return a reference! Move semantics already avoid copying things on the
heap when not necessary1

fn make_string() -> String {
String::from("hello")

}

1and the compiler will automatically determine if it’s faster to pass pointer to output struct or pass
via registers
Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 6 / 45

Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word.
The 'static lifetime is special: denotes “will be valid until the program
terminates”
Not super common to need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums
Other, more funky functions

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 7 / 45

Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word.

The 'static lifetime is special: denotes “will be valid until the program
terminates”
Not super common to need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums
Other, more funky functions

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 7 / 45

Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word.
The 'static lifetime is special: denotes “will be valid until the program
terminates”

Not super common to need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums
Other, more funky functions

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 7 / 45

Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word.
The 'static lifetime is special: denotes “will be valid until the program
terminates”
Not super common to need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums
Other, more funky functions

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 7 / 45

Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word.
The 'static lifetime is special: denotes “will be valid until the program
terminates”
Not super common to need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them

Functions taking in those structs/enums
Other, more funky functions

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 7 / 45

Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word.
The 'static lifetime is special: denotes “will be valid until the program
terminates”
Not super common to need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums

Other, more funky functions

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 7 / 45

Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word.
The 'static lifetime is special: denotes “will be valid until the program
terminates”
Not super common to need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums
Other, more funky functions

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 7 / 45

Explicit Lifetimes In Structs
struct Vertex<'a> {

edges: Vec<&'a Edge<'a>>,
}
struct Edge<'a> {

info: EdgeInfo,
vertex: &'a Vertex<'a>,

}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 8 / 45

Explicit Lifetimes In Function Signatures
fn bfs<'a>(

start_vertex: &'a Vertex<'a>,
max_depth: usize,

) -> Vec<&'a Vertex<'a>> {
...

}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 9 / 45

Returning An Invalid Reference Revisited
fn make_string<'a>() -> &'a String {

let s = String::from("hello");
&s

}

The same underlying issue as before, made more obvious by the lifetime annotation.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 10 / 45

Rules For Lifetimes In Function Signatures
(From https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html) Function
signatures follow these rules:

Any reference must have an annotated lifetime
Any reference being returned must have the same lifetime as an input, or be
'static

fn f1<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
// what goes here?

}

fn f2<'a, 'b>(x: &'a i32) -> &'b i32 {
// what goes here?

}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 11 / 45

https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html

Rules For Lifetimes In Function Signatures
(From https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html) Function
signatures follow these rules:

Any reference must have an annotated lifetime

Any reference being returned must have the same lifetime as an input, or be
'static

fn f1<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
// what goes here?

}

fn f2<'a, 'b>(x: &'a i32) -> &'b i32 {
// what goes here?

}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 11 / 45

https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html

Rules For Lifetimes In Function Signatures
(From https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html) Function
signatures follow these rules:

Any reference must have an annotated lifetime
Any reference being returned must have the same lifetime as an input, or be
'static

fn f1<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
// what goes here?

}

fn f2<'a, 'b>(x: &'a i32) -> &'b i32 {
// what goes here?

}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 11 / 45

https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html

Rules For Lifetimes In Function Signatures
(From https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html) Function
signatures follow these rules:

Any reference must have an annotated lifetime
Any reference being returned must have the same lifetime as an input, or be
'static

fn f1<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
// what goes here?

}

fn f2<'a, 'b>(x: &'a i32) -> &'b i32 {
// what goes here?

}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 11 / 45

https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html

Rules For Lifetimes In Function Signatures
(From https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html) Function
signatures follow these rules:

Any reference must have an annotated lifetime
Any reference being returned must have the same lifetime as an input, or be
'static

fn f1<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
// what goes here?

}

fn f2<'a, 'b>(x: &'a i32) -> &'b i32 {
// what goes here?

}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 11 / 45

https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html

Lifetime Elison
Certain patterns in Rust are very common:

// One input lifetime, return value is reference
fn f3<'a>(x: &'a i32) -> &'a i32 { ... }
// Multiple input lifetimes, return value is not reference
fn f4<'a, 'b, 'c>(x: &'a i32, y: &'b i32, z: &'c i32) -> i32 { ... }

So if a function signature falls into one of these patterns, you don’t have to explicitly
write lifetimes for it!

fn g3(x: &i32) -> &i32 { ... }
fn g4(x: &i32, y: &i32, z: &i32) -> i32 { ... }

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 12 / 45

Lifetime Elison
Certain patterns in Rust are very common:

// One input lifetime, return value is reference
fn f3<'a>(x: &'a i32) -> &'a i32 { ... }
// Multiple input lifetimes, return value is not reference
fn f4<'a, 'b, 'c>(x: &'a i32, y: &'b i32, z: &'c i32) -> i32 { ... }

So if a function signature falls into one of these patterns, you don’t have to explicitly
write lifetimes for it!

fn g3(x: &i32) -> &i32 { ... }
fn g4(x: &i32, y: &i32, z: &i32) -> i32 { ... }

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 12 / 45

Lifetime Elison Example
fn make_string(allocator: &mut Vec<String>) -> &String {

allocator.push(String::from("hello"));
&allocator[allocator.len() - 1]

}

Input and output lifetimes elided to be the same
Valid reference returned via reference to original data

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 13 / 45

Lifetime Elison Example
fn make_string(allocator: &mut Vec<String>) -> &String {

allocator.push(String::from("hello"));
&allocator[allocator.len() - 1]

}

Input and output lifetimes elided to be the same

Valid reference returned via reference to original data

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 13 / 45

Lifetime Elison Example
fn make_string(allocator: &mut Vec<String>) -> &String {

allocator.push(String::from("hello"));
&allocator[allocator.len() - 1]

}

Input and output lifetimes elided to be the same
Valid reference returned via reference to original data

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 13 / 45

Sidenote: Loop Labels
'outer: for y in 0..5 {

'inner: for x in 0..5 {
if arr1[y][x] { break 'outer; }
if arr2[x][y] { break 'inner; }

}
}

Loop labels are not lifetimes—same syntax as lifetimes, and same sort of scope idea,
but you can’t actually make references with these names and have it make sense

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 14 / 45

Outline

1 Lifetimes

2 Modules

3 Function Types

4 Closures

5 Function Traits

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 15 / 45

What Is A Module?

“A bag of things that go together”

Structs, Enums
Types, Traits
Constants, Static members,
Other modules!

Defines a namespace

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 16 / 45

What Is A Module?
“A bag of things that go together”

Structs, Enums
Types, Traits
Constants, Static members,
Other modules!

Defines a namespace

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 16 / 45

What Is A Module?
“A bag of things that go together”

Structs, Enums

Types, Traits
Constants, Static members,
Other modules!

Defines a namespace

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 16 / 45

What Is A Module?
“A bag of things that go together”

Structs, Enums
Types, Traits

Constants, Static members,
Other modules!

Defines a namespace

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 16 / 45

What Is A Module?
“A bag of things that go together”

Structs, Enums
Types, Traits
Constants, Static members,

Other modules!
Defines a namespace

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 16 / 45

What Is A Module?
“A bag of things that go together”

Structs, Enums
Types, Traits
Constants, Static members,
Other modules!

Defines a namespace

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 16 / 45

What Is A Module?
“A bag of things that go together”

Structs, Enums
Types, Traits
Constants, Static members,
Other modules!

Defines a namespace

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 16 / 45

Modules Within a File
fn f() { ... }
mod foo {

fn f() { ... }
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 17 / 45

Directory Structure Is Module Structure
src/
├── lib.rs
└── bar/

├── mod.rs (bar)
├── baz.rs (bar::baz)
└── qux.rs (bar::qux)

Alternatively,
src/
├── lib.rs
├── bar.rs (bar)
└── bar/

├── baz.rs (bar::baz)
└── qux.rs (bar::qux)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 18 / 45

Directory Structure Is Module Structure
src/
├── lib.rs
└── bar/

├── mod.rs (bar)
├── baz.rs (bar::baz)
└── qux.rs (bar::qux)

Alternatively,
src/
├── lib.rs
├── bar.rs (bar)
└── bar/

├── baz.rs (bar::baz)
└── qux.rs (bar::qux)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 18 / 45

Declaring File Modules
// In src/lib.rs:
mod bar;

// In the `bar` module:
mod baz;
mod qux;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 19 / 45

Declaring File Modules
// In src/lib.rs:
mod bar;

// In the `bar` module:
mod baz;
mod qux;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 19 / 45

Visibility

By default, everything in a module is private to that module
We need to explicitly declare items as public using the pub keyword:

pub struct Foo {
x: usize,
pub y: usize,

}
pub enum Bar {

Bar1,
Bar2,

}
pub fn calculate(f: Foo) -> Bar { ... }

pub mod baz;
mod qux;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 20 / 45

Visibility
By default, everything in a module is private to that module

We need to explicitly declare items as public using the pub keyword:

pub struct Foo {
x: usize,
pub y: usize,

}
pub enum Bar {

Bar1,
Bar2,

}
pub fn calculate(f: Foo) -> Bar { ... }

pub mod baz;
mod qux;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 20 / 45

Visibility
By default, everything in a module is private to that module
We need to explicitly declare items as public using the pub keyword:

pub struct Foo {
x: usize,
pub y: usize,

}
pub enum Bar {

Bar1,
Bar2,

}
pub fn calculate(f: Foo) -> Bar { ... }

pub mod baz;
mod qux;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 20 / 45

Using Modules
mod foo {

fn f() { ... }
}
fn main() {

foo::f();
}

Alternatively,

use foo::f;
fn main() {

f();
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 21 / 45

Using Modules
mod foo {

fn f() { ... }
}
fn main() {

foo::f();
}

Alternatively,

use foo::f;
fn main() {

f();
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 21 / 45

Using Multiple Things At Once
use bar::{g, baz::h};

use qux::*;

Useful for re-exports, collecting all useful includes into one “prelude”:

pub use crate::{
bar::{g, baz::h},
qux::*,

};

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 22 / 45

Using Multiple Things At Once
use bar::{g, baz::h};

use qux::*;

Useful for re-exports, collecting all useful includes into one “prelude”:

pub use crate::{
bar::{g, baz::h},
qux::*,

};

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 22 / 45

Using Multiple Things At Once
use bar::{g, baz::h};

use qux::*;

Useful for re-exports, collecting all useful includes into one “prelude”:

pub use crate::{
bar::{g, baz::h},
qux::*,

};

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 22 / 45

Outline

1 Lifetimes

2 Modules

3 Function Types

4 Closures

5 Function Traits

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 23 / 45

What Are Function Types?

Every value has a type
Functions are values! (sorry 15-122 stans)
Allows us to pass in functions as arguments to other functions, which many other
good languages do in some capacity

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 24 / 45

What Are Function Types?
Every value has a type

Functions are values! (sorry 15-122 stans)
Allows us to pass in functions as arguments to other functions, which many other
good languages do in some capacity

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 24 / 45

What Are Function Types?
Every value has a type
Functions are values! (sorry 15-122 stans)

Allows us to pass in functions as arguments to other functions, which many other
good languages do in some capacity

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 24 / 45

What Are Function Types?
Every value has a type
Functions are values! (sorry 15-122 stans)
Allows us to pass in functions as arguments to other functions, which many other
good languages do in some capacity

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 24 / 45

Rust’s Function Types

Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty
Types Implementing Function Traits:

Fn
FnOnce
FnMut

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 25 / 45

Rust’s Function Types
Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty

Types Implementing Function Traits:

Fn
FnOnce
FnMut

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 25 / 45

Rust’s Function Types
Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty
Types Implementing Function Traits:

Fn
FnOnce
FnMut

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 25 / 45

Rust’s Function Types
Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty
Types Implementing Function Traits:

Fn

FnOnce
FnMut

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 25 / 45

Rust’s Function Types
Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty
Types Implementing Function Traits:

Fn
FnOnce

FnMut

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 25 / 45

Rust’s Function Types
Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty
Types Implementing Function Traits:

Fn
FnOnce
FnMut

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 25 / 45

What Is A Function Pointer?
Value of the function pointer type is either:

A “function item” (named function in the code), or
A closure that doesn’t capture (which is effectively the same)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 26 / 45

What Is A Function Pointer?
Value of the function pointer type is either:

A “function item” (named function in the code), or

A closure that doesn’t capture (which is effectively the same)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 26 / 45

What Is A Function Pointer?
Value of the function pointer type is either:

A “function item” (named function in the code), or
A closure that doesn’t capture (which is effectively the same)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 26 / 45

Example: Using A Function Pointer
fn double(n: i32) -> i32 { 2 * n }
fn giveme_fnptr(f: fn(i32) -> i32) -> i32 {

f(42)
}
fn test_fnptr() {

assert_eq!(giveme_fnptr(double), 84);
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 27 / 45

Example: Using A Function Pointer
fn double(n: i32) -> i32 { 2 * n }
fn giveme_fnptr(f: fn(i32) -> i32) -> i32 {

f(42)
}
fn test_fnptr() {

assert_eq!(giveme_fnptr(double), 84);
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 27 / 45

Outline

1 Lifetimes

2 Modules

3 Function Types

4 Closures

5 Function Traits

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 28 / 45

Closure Syntax
From https://doc.rust-lang.org/book/ch13-01-closures.html

fn add_one_v1 (x: i32) -> i32 { x + 1 }
let add_one_v2 = |x: i32| -> i32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 29 / 45

https://doc.rust-lang.org/book/ch13-01-closures.html

Capturing State With Closures
If variable typed inside closure came from outside the closure, it is captured by
reference

Immutable if possible, mutable if necessary

let z = 5;
let closure = |x| z == x;

This can’t be done with functions! Will fail to compile:

fn f(x: i32) -> bool { z == x }

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 30 / 45

Capturing State With Closures
If variable typed inside closure came from outside the closure, it is captured by
reference

Immutable if possible, mutable if necessary

let z = 5;
let closure = |x| z == x;

This can’t be done with functions! Will fail to compile:

fn f(x: i32) -> bool { z == x }

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 30 / 45

Capturing State With Closures
If variable typed inside closure came from outside the closure, it is captured by
reference

Immutable if possible, mutable if necessary

let z = 5;
let closure = |x| z == x;

This can’t be done with functions! Will fail to compile:

fn f(x: i32) -> bool { z == x }

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 30 / 45

Capturing State With Closures
If variable typed inside closure came from outside the closure, it is captured by
reference

Immutable if possible, mutable if necessary

let z = 5;
let closure = |x| z == x;

This can’t be done with functions! Will fail to compile:

fn f(x: i32) -> bool { z == x }

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 30 / 45

Consuming State With Closures
Sometimes, we do want to move a value into a closure:

let message = String::from("hello");
thread::spawn(move || {

println!("{}", message);
});

move keyword: anything that would be captured by reference is now captured by value
(moved)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 31 / 45

Consuming State With Closures
Sometimes, we do want to move a value into a closure:

let message = String::from("hello");
thread::spawn(move || {

println!("{}", message);
});

move keyword: anything that would be captured by reference is now captured by value
(moved)

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 31 / 45

Things Closures Can’t Be
Recursive
Generic
In most cases, function pointers

If a closure doesn’t capture anything from its environment, it can be coerced to a
function pointer:

let x: fn(i32, i32) -> i32 = |x, y| x + y;

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 32 / 45

Type Of A Closure

You can’t write down their type!
Wait, so how can we take them as arguments??

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 33 / 45

Type Of A Closure
You can’t write down their type!

Wait, so how can we take them as arguments??

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 33 / 45

Type Of A Closure
You can’t write down their type!
Wait, so how can we take them as arguments??

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 33 / 45

Outline

1 Lifetimes

2 Modules

3 Function Types

4 Closures

5 Function Traits

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 34 / 45

Traits Aren’t Types

Types: correspond to the compiler’s representation of data
Traits: describe what a type can do

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 35 / 45

Traits Aren’t Types
Types: correspond to the compiler’s representation of data

Traits: describe what a type can do

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 35 / 45

Traits Aren’t Types
Types: correspond to the compiler’s representation of data
Traits: describe what a type can do

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 35 / 45

Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference
Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 36 / 45

Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32

Can be called by shared reference
Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 36 / 45

Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference

Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 36 / 45

Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference
Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 36 / 45

Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference
Closure must:

Not mutate any captured state

Not move any captured state out
All (safe) function pointers also implement Fn

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 36 / 45

Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference
Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 36 / 45

Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference
Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 36 / 45

Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 37 / 45

Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 37 / 45

Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 37 / 45

Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 37 / 45

FnMut Trait
let mut state = 0;
let fnmut_closure = |x| {

state += x;
state

};

Can be called by mutable reference
Closure must not move any captured state out

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 38 / 45

FnMut Trait
let mut state = 0;
let fnmut_closure = |x| {

state += x;
state

};

Can be called by mutable reference

Closure must not move any captured state out

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 38 / 45

FnMut Trait
let mut state = 0;
let fnmut_closure = |x| {

state += x;
state

};

Can be called by mutable reference
Closure must not move any captured state out

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 38 / 45

Example: Using FnMut
fn giveme_fnmut(mut f: impl FnMut(i32) -> i32) -> i32 {

let x = f(42);
f(x)

}
assert_eq!(giveme_fnmut(fnmut_closure), 84);

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 39 / 45

Example: Using FnMut
fn giveme_fnmut(mut f: impl FnMut(i32) -> i32) -> i32 {

let x = f(42);
f(x)

}
assert_eq!(giveme_fnmut(fnmut_closure), 84);

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 39 / 45

FnOnce Trait
let state = Box::new(42);
let fnonce_closure = move |x| {

let y = x + *state;
drop(state);
y

};

Can be called by taking ownership of the closure
All closures implement this

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 40 / 45

FnOnce Trait
let state = Box::new(42);
let fnonce_closure = move |x| {

let y = x + *state;
drop(state);
y

};

Can be called by taking ownership of the closure

All closures implement this

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 40 / 45

FnOnce Trait
let state = Box::new(42);
let fnonce_closure = move |x| {

let y = x + *state;
drop(state);
y

};

Can be called by taking ownership of the closure
All closures implement this

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 40 / 45

Example: Using FnOnce
fn giveme_fnonce(f: impl FnOnce(i32) -> i32) -> i32 {

let x = f(42);
// let y = f(9 * 6); // Does not compile
x

}

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 41 / 45

Why Are There So Many Different Traits??

Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”
FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”
FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 42 / 45

Why Are There So Many Different Traits??
Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”
FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”
FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 42 / 45

Why Are There So Many Different Traits??
Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”

FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”
FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 42 / 45

Why Are There So Many Different Traits??
Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”
FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”

FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 42 / 45

Why Are There So Many Different Traits??
Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”
FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”
FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 42 / 45

Why Are There So Many Different Traits??
Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”
FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”
FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 42 / 45

Manually Implementing Function Traits?
Unfortunately, only on nightly, a.k.a. “unstable” Rust. Only closures will implement
these traits for now.

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 43 / 45

https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=b15b299a2a1f7c179588fa99b7c749d4

Next Time
Livecoding!!

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 44 / 45

Homework: What We Meant To Give You Last
Time
Tarball: https://rust-stuco.github.io/handouts/TODO-handout.tgz
Handout PDF: https://rust-stuco.github.io/handouts/TODO-writeup.pdf

Cooper Pierce & Jack Duvall Lifetimes, Function Types & More Ownership 8th February 2023 45 / 45

https://rust-stuco.github.io/handouts/TODO-handout.tgz
https://rust-stuco.github.io/handouts/TODO-writeup.pdf

	Lifetimes
	Modules
	Function Types
	Closures
	Function Traits

