
Rust’s Standard Library

Cooper Pierce & Jack Duvall

Attendance

https://forms.gle/uBUN847jhmGKPbUK9

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 1 / 64

https://forms.gle/uBUN847jhmGKPbUK9

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 2 / 64

Arrays: [T; N]
Recall that we have statically fixed-size array types in Rust, written [T; N].

let x: [i32; 5] = [0, 1, 2, 3, 4];
// Note: for [x; N], with x: T, we require T: Copy!
let y = [0; 100];

let s = [String::from("foo"), String::from("bar")];

and we can use “slice patterns” with them:

let [x, y, z] = [1, 2, 3];
let [a, b] = ["A", "B"];

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 3 / 64

Arrays: [T; N]
Recall that we have statically fixed-size array types in Rust, written [T; N].

let x: [i32; 5] = [0, 1, 2, 3, 4];
// Note: for [x; N], with x: T, we require T: Copy!
let y = [0; 100];

let s = [String::from("foo"), String::from("bar")];

and we can use “slice patterns” with them:

let [x, y, z] = [1, 2, 3];
let [a, b] = ["A", "B"];

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 3 / 64

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 4 / 64

https://doc.rust-lang.org/std/vec/struct.Vec.html

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 4 / 64

https://doc.rust-lang.org/std/vec/struct.Vec.html

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 4 / 64

https://doc.rust-lang.org/std/vec/struct.Vec.html

Some useful functions for Vec<T>:

// Creation
fn new() -> Vec<T>;
fn with_capacity(capacity: usize) -> Vec<T>;

// Modification
fn push(&mut self, value: T);
fn pop(&mut self) -> Option<T>;

fn insert(&mut self, index: usize, element: T);
fn remove(&mut self, index: usize) -> T;

// Metadata
fn len(&self) -> usize;
fn is_empty(&self) -> bool;

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 5 / 64

Vec<T>: Representation

|len |
| |
2
capacity
4

ptr
*------------->

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 6 / 64

https://doc.rust-lang.org/std/vec/struct.Vec.html

VecDeque<T>
What if we want efficent access to both the front and back of our Vec<T> for both
reading/writing?

let x = vec![1, 2, 3, 4];
x.remove(0);
x.insert(0, 5);

We can use a VecDeque<T> instead!

let x = VecDeque::from([1, 2, 3, 4]);
x.pop_front();
x.push_front(5);

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 7 / 64

https://doc.rust-lang.org/std/collections/vec_deque/struct.VecDeque.html

VecDeque<T>
What if we want efficent access to both the front and back of our Vec<T> for both
reading/writing?

let x = vec![1, 2, 3, 4];
x.remove(0);
x.insert(0, 5);

We can use a VecDeque<T> instead!

let x = VecDeque::from([1, 2, 3, 4]);
x.pop_front();
x.push_front(5);

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 7 / 64

https://doc.rust-lang.org/std/collections/vec_deque/struct.VecDeque.html

Some useful functions for VecDeque<T>:

// Creation
fn new() -> Vec<T>;
fn with_capacity(capacity: usize) -> Vec<T>;

// Modification
fn push_front / push_back(&mut self, value: T);
fn pop_front / pop_back(&mut self) -> Option<T>;

// We'll come back to this one
fn make_contiguous(&mut self) -> &mut [T];

// Metadata
fn len(&self) -> usize;
fn is_empty(&self) -> bool;

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 8 / 64

Slices: [T], &[T] and &mut [T]
Recall that [T] is a unsized/dynamically-sized view into a continugous sequence of
element type T.
Because we can view many ways of collecting data this way, we can simply define a lot
of useful algorithms on this type:

fn len(&self) -> usize;

// Searching & sorting
fn binary_search<T: Ord>(&self, x: &T) -> Result<usize, usize>;
fn sort<T: Ord>(&mut self);
fn sort_unstable<T: Ord>(&mut self);

// Sliding window
fn windows(&self, size: usize) -> impl Iterator<Item = &[T]>;

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 9 / 64

https://doc.rust-lang.org/std/primitive.slice.html

Slices: Representation
___________ _______________
len		len	ptr	
		2	*	
3		_______	___	___

capacity				
	.----------'			
4				

ptr	_________v_____________________			
*------------->	2	3	5	X
___________		_______	_______	_______

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 10 / 64

HashMap and BTreeMap
We might also want to be able to efficently look up data given a key, and we have two
main way of doing this in the standard library:

HashMap
BTreeMap

which each have different trait bounds for the keys.

For HashMap<K, V>, we (essentially) require that &K: Hash + Eq.
For BTreeMap<K, V>, we (essentially) require that &K: Ord and K: Ord.

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 11 / 64

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

HashMap and BTreeMap
We might also want to be able to efficently look up data given a key, and we have two
main way of doing this in the standard library:

HashMap
BTreeMap

which each have different trait bounds for the keys.

For HashMap<K, V>, we (essentially) require that &K: Hash + Eq.
For BTreeMap<K, V>, we (essentially) require that &K: Ord and K: Ord.

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 11 / 64

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

The most relevant functions are:

fn new() -> HashMap<K, V> / BTreeMap<K, V>;

fn insert(&mut self, key: K, value: V) -> Option<V>;
// Basically, K: Borrow<Q> means that &K can be viewed as &Q
fn get<Q, K: Borrow<Q>>(&self, k: &Q) -> Option<&V>
fn remove<Q, K: Borrow<Q>>(&mut self, key: &Q) -> Option<V>;

fn keys(&self) -> impl Iterator<Item = &K>;
fn values(&self) -> impl Iterator<Item = &V>;

fn entry(&mut self, key: K) -> Entry<'_, K, V>;

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 12 / 64

Entry
Let’s take a look at that Entry<'a, K, V> type which popped up in our maps’
interface.

pub enum Entry<'a, K: 'a, V: 'a> {
Occupied(OccupiedEntry<'a, K, V>),
Vacant(VacantEntry<'a, K, V>),

}

and some relevant functions:

fn and_modify(self, f: impl FnOnce(&mut V)) -> Self;
fn or_insert(self, default: V) -> &'a mut V;

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 13 / 64

https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

Using an Entry
let mut map: HashMap<&str, u32> = HashMap::new();

map.entry("my_entry")
.and_modify(|e| { *e += 1 })
.or_insert(42);

assert!(match map.get("my_entry") { Some(42) => true, _ => false });

map.entry("my_entry")
.and_modify(|e| { *e += 1 })
.or_insert(42);

assert!(match map.get("my_entry") { Some(43) => true, _ => false });

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 14 / 64

https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 15 / 64

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?

integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 16 / 64

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),

bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 16 / 64

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,

Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 16 / 64

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,

function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 16 / 64

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,

&T for all T
What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 16 / 64

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 16 / 64

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?
Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 16 / 64

https://doc.rust-lang.org/std/clone/trait.Clone.html

Copy
Let’s look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this?

We say that Copy is a “marker trait” because it doesn’t
require anything specific to be implemented—it just “marks” the type as having some
property.

// Recall that i32: Copy
let x = 7;
let y = x;
let z = x + y; // Okay, because x was copied, not moved!

println!("{} = {} + {}", z, x, y);

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 17 / 64

https://doc.rust-lang.org/std/marker/trait.Copy.html

Copy
Let’s look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this? We say that Copy is a “marker trait” because it doesn’t
require anything specific to be implemented—it just “marks” the type as having some
property.

// Recall that i32: Copy
let x = 7;
let y = x;
let z = x + y; // Okay, because x was copied, not moved!

println!("{} = {} + {}", z, x, y);

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 17 / 64

https://doc.rust-lang.org/std/marker/trait.Copy.html

Copy
Let’s look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this? We say that Copy is a “marker trait” because it doesn’t
require anything specific to be implemented—it just “marks” the type as having some
property.

// Recall that i32: Copy
let x = 7;
let y = x;
let z = x + y; // Okay, because x was copied, not moved!

println!("{} = {} + {}", z, x, y);

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 17 / 64

https://doc.rust-lang.org/std/marker/trait.Copy.html

Deriving Copy and Clone
Both Copy and Clone can be derived:

#[derive(Copy, Clone)]
struct Rational(bool, u32, u32);

#[derive(Clone)]
struct Student {

andrewid: [u8; 8],
name: String,

}

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 18 / 64

Deriving Copy and Clone
Both Copy and Clone can be derived:

#[derive(Copy, Clone)]
struct Rational(bool, u32, u32);

#[derive(Clone)]
struct Student {

andrewid: [u8; 8],
name: String,

}

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 18 / 64

PartialEq
In addition to making copies of values we have, another useful thing is to be able to
see if we have two values which are the same:

pub trait PartialEq<Rhs = Self> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

}

A type can implement PartialEq for any partial equvialence relation: it needs to be
symmetric and transitive, but not reflexive.
What might be a type which implements PartialEq, but not Eq?

One notable example is floating point types like f32 and f64, because NaN != NaN.

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 19 / 64

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://en.wikipedia.org/wiki/Partial_equivalence_relation

PartialEq
In addition to making copies of values we have, another useful thing is to be able to
see if we have two values which are the same:

pub trait PartialEq<Rhs = Self> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

}

A type can implement PartialEq for any partial equvialence relation: it needs to be
symmetric and transitive, but not reflexive.
What might be a type which implements PartialEq, but not Eq?

One notable example is floating point types like f32 and f64, because NaN != NaN.

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 19 / 64

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://en.wikipedia.org/wiki/Partial_equivalence_relation

Eq
So like I’ve spoiled already, we have another trait for equivalence relations:

pub trait Eq: PartialEq<Self> { }

We can derive both this and PartialEq, which will just check all our fields pairwise, or
we can implement a custom version where we can check whatever properties matter to
us for equality

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 20 / 64

https://doc.rust-lang.org/std/cmp/trait.Eq.html

Implementing Eq
struct Class {

dept: u8,
number: u8,
cross_listed: HashSet<(u8, u8)>,

}

impl PartialEq for Class {
fn eq(&self, other: &Self) -> bool {

(self.dept == other.dept && self.number == other.number)
|| self.cross_listed.contains(&(other.dept, other.number))

}
}

impl Eq for Class { }

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 21 / 64

PartialOrd
We likewise have a trait for strict preorders on a subset of our type
pub trait PartialOrd<Rhs = Self>: PartialEq<Rhs> {

fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;

fn lt(&self, other: &Rhs) -> bool { ... }
fn le(&self, other: &Rhs) -> bool { ... }
fn gt(&self, other: &Rhs) -> bool { ... }
fn ge(&self, other: &Rhs) -> bool { ... }

}

enum Ordering {
Less,
Equal,
Greater,

}

For this, we just need transitivity and duality (a < b iff b < a).
Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 22 / 64

https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html

Ord
There’s also a corresponding version for when we can define the order over all the
value for our type:

pub trait Ord: Eq + PartialOrd<Self> {
fn cmp(&self, other: &Self) -> Ordering;
fn max(self, other: Self) -> Self { ... }
fn min(self, other: Self) -> Self { ... }
fn clamp(self, min: Self, max: Self) -> Self { ... }

}

Here we can also see the value of being able to provide default implementations of
functions—the ones here are actually pretty useful!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 23 / 64

https://doc.rust-lang.org/std/cmp/trait.Ord.html

Debug
Oftentimes we might want a quick and easy way to print out a type for debugging—we
can do this with the "{:?}" format specifier, and it’ll use the Debug implementation.
pub trait Debug {

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}

Normally, we’ll just derive this on everything and it’ll help us out when we’re
debugging.

#[derive(Debug)]
struct Point {

x: i32,
y: i32

}

assert_eq!(
format!("{:?}", Point { x: 7, y: 12 }),
"Point { x: 7, y: 12 }"

);

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 24 / 64

https://doc.rust-lang.org/std/fmt/trait.Debug.html

Display
The definition of Display is the exact same as for Debug:

pub trait Display {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;

}

except this is what’s used for the "{}", the default/empty format specifier.
Because Display is intended for formatting user-facing output, we can’t derive it, and
instead would implement it ourselves to dispay our data in a human-friendly way.

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 25 / 64

https://doc.rust-lang.org/std/fmt/trait.Display.html

From
Another common situation is wanting to be able to convert a value of one type to
another:

pub trait From<T> {
fn from(T) -> Self;

}

There’s also a falliable version of this in TryFrom.
A common use for this, that we’ve already seen, is converting &'static str to
String—more on strings soon.

let s = String::from("Hello, world!");
let k: String = "Hello, world!".into();

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 26 / 64

https://doc.rust-lang.org/std/convert/trait.From.html

Into
Into essentially provides the reciprocol of From:

pub trait Into<T> {
fn into(self) -> T;

}

Generally you want to implement From, because if T implements From<U>, then
Into<T> is automatically implemented for U. This is because there’s a blanket
implementation for Into that looks like this:

impl<T, U: From<T>> Into<U> for T {
fn into(self) -> U {

U::from(self)
}

}

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 27 / 64

https://doc.rust-lang.org/std/convert/trait.Into.html

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 28 / 64

Iterator
There’s another major trait we haven’t talked about in-depth yet, Iterator. To see
how useful this might be, let’s take a look at it’s items.

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 29 / 64

https://doc.rust-lang.org/std/iter/trait.Iterator.html

pub trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

fn size_hint(&self) -> (usize, Option<usize>) { ... }
fn count(self) -> usize { ... }
fn last(self) -> Option<Self::Item> { ... }
fn advance_by(&mut self, n: usize) -> Result<(), usize> { ... }
fn nth(&mut self, n: usize) -> Option<Self::Item> { ... }
fn step_by(self, step: usize) -> StepBy<Self> { ... }
fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter>
where

U: IntoIterator<Item = Self::Item>,
{ ... }
fn zip<U>(self, other: U)

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 30 / 64

-> Zip<Self, <U as IntoIterator>::IntoIter>
where

U: IntoIterator,
{ ... }
fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
where

Self::Item: Clone,
{ ... }
fn intersperse_with<G>(self, separator: G)

-> IntersperseWith<Self, G>
where

G: FnMut() -> Self::Item,
{ ... }
fn map<B, F>(self, f: F) -> Map<Self, F>
where

F: FnMut(Self::Item) -> B,

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 31 / 64

{ ... }
fn for_each<F>(self, f: F)
where

F: FnMut(Self::Item),
{ ... }
fn filter<P>(self, predicate: P) -> Filter<Self, P>
where

P: FnMut(&Self::Item) -> bool,
{ ... }
fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
where

F: FnMut(Self::Item) -> Option,
{ ... }
fn enumerate(self) -> Enumerate<Self> { ... }
fn peekable(self) -> Peekable<Self> { ... }
fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 32 / 64

where
P: FnMut(&Self::Item) -> bool,

{ ... }
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
where

P: FnMut(&Self::Item) -> bool,
{ ... }
fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
where

P: FnMut(Self::Item) -> Option,
{ ... }
fn skip(self, n: usize) -> Skip<Self> { ... }
fn take(self, n: usize) -> Take<Self> { ... }
fn scan<St, B, F>(self, initial_state: St, f: F)

-> Scan<Self, St, F>
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 33 / 64

F: FnMut(&mut St, Self::Item) -> Option,
{ ... }
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where

U: IntoIterator,
F: FnMut(Self::Item) -> U,

{ ... }
fn flatten(self) -> Flatten<Self>
where

Self::Item: IntoIterator,
{ ... }
fn fuse(self) -> Fuse<Self> { ... }
fn inspect<F>(self, f: F) -> Inspect<Self, F>
where

F: FnMut(&Self::Item),
{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 34 / 64

fn by_ref(&mut self) -> &mut Self { ... }
fn collect(self) -> B
where

B: FromIterator<Self::Item>,
{ ... }
fn partition<B, F>(self, f: F) -> (B, B)
where

B: Default + Extend<Self::Item>,
F: FnMut(&Self::Item) -> bool,

{ ... }
fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
where

T: 'a,
Self: DoubleEndedIterator<Item = &'a mut T>,
P: FnMut(&T) -> bool,

{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 35 / 64

fn is_partitioned<P>(self, predicate: P) -> bool
where

P: FnMut(Self::Item) -> bool,
{ ... }
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where

F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,

{ ... }
fn try_for_each<F, R>(&mut self, f: F) -> R
where

F: FnMut(Self::Item) -> R,
R: Try<Output = ()>,

{ ... }
fn fold<B, F>(self, init: B, f: F) -> B
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 36 / 64

F: FnMut(B, Self::Item) -> B,
{ ... }
fn reduce<F>(self, f: F) -> Option<Self::Item>
where

F: FnMut(Self::Item, Self::Item) -> Self::Item,
{ ... }
fn all<F>(&mut self, f: F) -> bool
where

F: FnMut(Self::Item) -> bool,
{ ... }
fn any<F>(&mut self, f: F) -> bool
where

F: FnMut(Self::Item) -> bool,
{ ... }
fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 37 / 64

P: FnMut(&Self::Item) -> bool,
{ ... }
fn find_map<B, F>(&mut self, f: F) -> Option
where

F: FnMut(Self::Item) -> Option,
{ ... }
fn try_find<F, R, E>(&mut self, f: F)

-> Result<Option<Self::Item>, E>
where

F: FnMut(&Self::Item) -> R,
R: Try<Output = bool, Residual = Result<Infallible, E>>

+ Try,
{ ... }
fn position<P>(&mut self, predicate: P) -> Option<usize>
where

P: FnMut(Self::Item) -> bool,

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 38 / 64

{ ... }
fn rposition<P>(&mut self, predicate: P) -> Option<usize>
where

P: FnMut(Self::Item) -> bool,
Self: ExactSizeIterator + DoubleEndedIterator,

{ ... }
fn max(self) -> Option<Self::Item>
where

Self::Item: Ord,
{ ... }
fn min(self) -> Option<Self::Item>
where

Self::Item: Ord,
{ ... }
fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 39 / 64

B: Ord,
F: FnMut(&Self::Item) -> B,

{ ... }
fn max_by<F>(self, compare: F) -> Option<Self::Item>
where

F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{ ... }
fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>
where

B: Ord,
F: FnMut(&Self::Item) -> B,

{ ... }
fn min_by<F>(self, compare: F) -> Option<Self::Item>
where

F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 40 / 64

fn rev(self) -> Rev<Self>
where

Self: DoubleEndedIterator,
{ ... }
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
where

FromA: Default + Extend<A>,
FromB: Default + Extend,
Self: Iterator<Item = (A, B)>,

{ ... }
fn copied<'a, T>(self) -> Copied<Self>
where

T: 'a + Copy,
Self: Iterator<Item = &'a T>,

{ ... }
fn cloned<'a, T>(self) -> Cloned<Self>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 41 / 64

where
T: 'a + Clone,
Self: Iterator<Item = &'a T>,

{ ... }
fn cycle(self) -> Cycle<Self>
where

Self: Clone,
{ ... }
fn sum<S>(self) -> S
where

S: Sum<Self::Item>,
{ ... }
fn product<P>(self) -> P
where

P: Product<Self::Item>,
{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 42 / 64

fn cmp<I>(self, other: I) -> Ordering
where

I: IntoIterator<Item = Self::Item>,
Self::Item: Ord,

{ ... }
fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
where

I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item)

-> Ordering,
{ ... }
fn partial_cmp<I>(self, other: I) -> Option<Ordering>
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 43 / 64

fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F)
-> Option<Ordering>

where
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item)

-> Option<Ordering>,
{ ... }
fn eq<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>,

{ ... }
fn eq_by<I, F>(self, other: I, eq: F) -> bool
where

I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool,

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 44 / 64

{ ... }
fn ne<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>,

{ ... }
fn lt<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }
fn le<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 45 / 64

fn gt<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }
fn ge<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }
fn is_sorted(self) -> bool
where

Self::Item: PartialOrd<Self::Item>,
{ ... }
fn is_sorted_by<F>(self, compare: F) -> bool
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 46 / 64

F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
{ ... }
fn is_sorted_by_key<F, K>(self, f: F) -> bool
where

F: FnMut(Self::Item) -> K,
K: PartialOrd<K>,

{ ... }
}

.. a lot of stuff!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 47 / 64

Ones you probably care about
trait Iterator {

type Item;
fn next(&mut self) -> Option<Self::Item>;
fn map(self, f: impl FnMut(Self::Item) -> B)

-> impl Iterator<Item = B>
{ ... }
fn filter(self, predicate: impl FnMut(&Self::Item) -> bool)

-> impl Iterator<Item = Self::Item>
{ ... }
fn flatten(self) -> Flatten<Self>
where

Self::Item: IntoIterator,
{ ... }

}

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 48 / 64

IntoIterator
pub trait IntoIterator {

type Item;
type IntoIter: Iterator<Item = Self::Item>;
fn into_iter(self) -> Self::IntoIter;

}

What is a for loop anyway?
https://doc.rust-lang.org/std/iter/index.html#for-loops-and-intoiterator

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 49 / 64

https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/index.html#for-loops-and-intoiterator

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 50 / 64

How Rust Represents Strings

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 51 / 64

How Rust Represents Strings

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 51 / 64

Problems with char*

May not have a null terminator
May not point to string data
May not point to string data with the right encoding

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 52 / 64

Problems with char*
May not have a null terminator

May not point to string data
May not point to string data with the right encoding

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 52 / 64

Problems with char*
May not have a null terminator
May not point to string data

May not point to string data with the right encoding

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 52 / 64

Problems with char*
May not have a null terminator
May not point to string data
May not point to string data with the right encoding

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 52 / 64

&str

UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 53 / 64

&str
UTF-8 encoding

“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 53 / 64

&str
UTF-8 encoding
“Fat pointer” with data + length (like a slice)

Not necessarily null terminated
All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 53 / 64

&str
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 53 / 64

&str
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 53 / 64

String

UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 54 / 64

String
UTF-8 encoding

“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 54 / 64

String
UTF-8 encoding
“Fat pointer” with data + length (like a slice)

Not necessarily null terminated
Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 54 / 64

String
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 54 / 64

String
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec.

This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 54 / 64

String
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 54 / 64

String types for FFI

CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses platform-compatible
encoding1.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

1On every non-Windows platform, this is still just UTF-8. On Windows, which uses UTF-16, this is
WTF-8, an encoding that is more permissive than UTF-8 to handle “malformed” UTF-16

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 55 / 64

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.

&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses platform-compatible
encoding1.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

1On every non-Windows platform, this is still just UTF-8. On Windows, which uses UTF-16, this is
WTF-8, an encoding that is more permissive than UTF-8 to handle “malformed” UTF-16

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 55 / 64

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.

OSString: Rust-owned string, no interior nulls, uses platform-compatible
encoding1.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

1On every non-Windows platform, this is still just UTF-8. On Windows, which uses UTF-16, this is
WTF-8, an encoding that is more permissive than UTF-8 to handle “malformed” UTF-16

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 55 / 64

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses platform-compatible
encoding1.

&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

1On every non-Windows platform, this is still just UTF-8. On Windows, which uses UTF-16, this is
WTF-8, an encoding that is more permissive than UTF-8 to handle “malformed” UTF-16

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 55 / 64

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses platform-compatible
encoding1.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

1On every non-Windows platform, this is still just UTF-8. On Windows, which uses UTF-16, this is
WTF-8, an encoding that is more permissive than UTF-8 to handle “malformed” UTF-16

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 55 / 64

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses platform-compatible
encoding1.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

1On every non-Windows platform, this is still just UTF-8. On Windows, which uses UTF-16, this is
WTF-8, an encoding that is more permissive than UTF-8 to handle “malformed” UTF-16
Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 55 / 64

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T
String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 56 / 64

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T
String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 56 / 64

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T
String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 56 / 64

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T

String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 56 / 64

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T
String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 56 / 64

Rust has some coercions. These are done when desired type is explicitly labeled
(somewhere), and casting would be lossless:

let x: &i8 = &mut 42;

fn foo(x: &i8) -> &dyn std::fmt::Display { x }

fn main {
foo(&mut 0);

}

Deref coercion is a subset of type coercion: &T or &mut T can be coerced to &U if
T: Deref<Target=U>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 57 / 64

Rust has some coercions. These are done when desired type is explicitly labeled
(somewhere), and casting would be lossless:

let x: &i8 = &mut 42;

fn foo(x: &i8) -> &dyn std::fmt::Display { x }

fn main {
foo(&mut 0);

}

Deref coercion is a subset of type coercion: &T or &mut T can be coerced to &U if
T: Deref<Target=U>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 57 / 64

Rust has some coercions. These are done when desired type is explicitly labeled
(somewhere), and casting would be lossless:

let x: &i8 = &mut 42;

fn foo(x: &i8) -> &dyn std::fmt::Display { x }

fn main {
foo(&mut 0);

}

Deref coercion is a subset of type coercion: &T or &mut T can be coerced to &U if
T: Deref<Target=U>

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 57 / 64

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 58 / 64

Box<T>
A Box<T> is just a (non-null!) pointer which owns a value of type T.

let x = Box::new(7);
assert_eq!(*x, 7);
*x += 10;
assert_eq!(*x, 17);

This ends up being very useful when defining a recursive struct or enum.

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 59 / 64

https://doc.rust-lang.org/std/boxed/struct.Box.html

Some relevant functions for working with Box<T>:

fn new(x: T) -> Box<T>;
fn leak<'a>(b: Box<T>) -> &'a mut T;

// From traits
fn as_mut(&self) -> &mut T;
fn as_ref(&self) -> &T;

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 60 / 64

Box<T>: Representation
.-----. ___
|ptr | | |
| *---------->| 7 |
'_____' |___|

If we’re using an Option<Box<T>> we can perform a null pointer optimisation, where
None is instead represented as a null pointer, instead of a heap allocation with the
requisite tag.
This means we can avoid storing an extra byte to know if we’re None or Some(v).
This can be done generally for any enums for which the compiler is aware of a niche in
the representation forbidding a zero bit pattern2.

2yes there are platforms where a null pointer is not all bits zero, no I don’t care about them
Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 61 / 64

Box<T>: Representation
.-----. ___
|ptr | | |
| *---------->| 7 |
'_____' |___|

If we’re using an Option<Box<T>> we can perform a null pointer optimisation, where
None is instead represented as a null pointer, instead of a heap allocation with the
requisite tag.
This means we can avoid storing an extra byte to know if we’re None or Some(v).
This can be done generally for any enums for which the compiler is aware of a niche in
the representation forbidding a zero bit pattern2.

2yes there are platforms where a null pointer is not all bits zero, no I don’t care about them
Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 61 / 64

Rc<T>
Where we can only have one owner of a Box<T>, and all ownership is enforced
statically, we can instead used reference counting to push some of this to runtime (for
a little cost).

let mut x = Rc::new(3);
if let Some(v) = Rc::get_mut(&mut x) {

*v = 4;
} else {

unreachable!("Didn't get a mutable reference!");
}
assert_eq!(*x, 4);

// Generally preferred to disambiguate from cloning the inner value
let _y = Rc::clone(&x);
assert!(Rc::get_mut(&mut x).is_none());

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 62 / 64

https://doc.rust-lang.org/std/boxed/struct.Box.html

Relevant functions for Rc<T>.

fn new(value: T) -> Rc<T>;
fn get_mut(this: &mut Rc<T>) -> Option<&mut T>;
fn make_mut<T: Clone>(this: &mut Rc<T>) -> &mut T;

// From traits--but important! Points to same allocation.
fn clone(&self) -> Rc<T>;

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 63 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>

replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum? Clone, but
stdlib requires Copy.

RefCell<T>

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>

replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum?

Clone, but
stdlib requires Copy.

RefCell<T>

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>

replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum?

Clone, but
stdlib requires Copy.

RefCell<T>

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.

Also get(&self) -> T: what bounds would this need at minimum?

Clone, but
stdlib requires Copy.

RefCell<T>

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum?

Clone, but
stdlib requires Copy.

RefCell<T>

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum? Clone, but
stdlib requires Copy.

RefCell<T>

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum? Clone, but
stdlib requires Copy.

RefCell<T>

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference
UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum? Clone, but
stdlib requires Copy.

RefCell<T>
borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum? Clone, but
stdlib requires Copy.

RefCell<T>
borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell<T>
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
Also get(&self) -> T: what bounds would this need at minimum? Clone, but
stdlib requires Copy.

RefCell<T>
borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell<T>
get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 22nd February 2023 64 / 64

	Common Data Structures
	Common Traits
	Iterator
	Strings
	Smart Pointers and Cells

