
Error Handling and Advanced
Testing
after all, you need some way to deal with buggy
code!

Cooper Pierce & Jack Duvall



Attendance

https://forms.gle/CcMcTxpKsvo28qnr8

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 1 / 48

https://forms.gle/CcMcTxpKsvo28qnr8


Outline

1 Error Handling

2 Panics

3 Testing

4 Advanced Testing Strategies

5 Homework

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 2 / 48



Outline

1 Error Handling

2 Panics

3 Testing

4 Advanced Testing Strategies

5 Homework

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 3 / 48



In General: Ways Of Signaling Errors

Error Return Codes: Function returns a special value to notify caller that it
didn’t complete successfully.
Exceptions: Abnormal return path, propogating up callstack until a special
exception handler catches it.
Signals/Panics: Program immediately interrupted at the request of the OS,
usually leads to termination due to severity.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 4 / 48



In General: Ways Of Signaling Errors
Error Return Codes: Function returns a special value to notify caller that it
didn’t complete successfully.

Exceptions: Abnormal return path, propogating up callstack until a special
exception handler catches it.
Signals/Panics: Program immediately interrupted at the request of the OS,
usually leads to termination due to severity.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 4 / 48



In General: Ways Of Signaling Errors
Error Return Codes: Function returns a special value to notify caller that it
didn’t complete successfully.
Exceptions: Abnormal return path, propogating up callstack until a special
exception handler catches it.

Signals/Panics: Program immediately interrupted at the request of the OS,
usually leads to termination due to severity.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 4 / 48



In General: Ways Of Signaling Errors
Error Return Codes: Function returns a special value to notify caller that it
didn’t complete successfully.
Exceptions: Abnormal return path, propogating up callstack until a special
exception handler catches it.
Signals/Panics: Program immediately interrupted at the request of the OS,
usually leads to termination due to severity.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 4 / 48



Exceptions Considered Harmful
How can you guarantee that calling function won’t throw an exception?

SML: Exceptional control flow built into the type, see letcc.
C++: Function can optionally be annotated with noexcept keyword
Most Other Languages With Exceptions (Python, Java, etc.): Sorry bro ur
out of luck, read the docs ig

How do you release resources if an exception is thrown?

Garbage collected languages: same as usual
C++: Need to treat every non-noexcept function like it could throw and add
code to clean up local resources if it does

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 5 / 48



Exceptions Considered Harmful
How can you guarantee that calling function won’t throw an exception?

SML: Exceptional control flow built into the type, see letcc.

C++: Function can optionally be annotated with noexcept keyword
Most Other Languages With Exceptions (Python, Java, etc.): Sorry bro ur
out of luck, read the docs ig

How do you release resources if an exception is thrown?

Garbage collected languages: same as usual
C++: Need to treat every non-noexcept function like it could throw and add
code to clean up local resources if it does

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 5 / 48



Exceptions Considered Harmful
How can you guarantee that calling function won’t throw an exception?

SML: Exceptional control flow built into the type, see letcc.
C++: Function can optionally be annotated with noexcept keyword

Most Other Languages With Exceptions (Python, Java, etc.): Sorry bro ur
out of luck, read the docs ig

How do you release resources if an exception is thrown?

Garbage collected languages: same as usual
C++: Need to treat every non-noexcept function like it could throw and add
code to clean up local resources if it does

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 5 / 48



Exceptions Considered Harmful
How can you guarantee that calling function won’t throw an exception?

SML: Exceptional control flow built into the type, see letcc.
C++: Function can optionally be annotated with noexcept keyword
Most Other Languages With Exceptions (Python, Java, etc.): Sorry bro ur
out of luck, read the docs ig

How do you release resources if an exception is thrown?

Garbage collected languages: same as usual
C++: Need to treat every non-noexcept function like it could throw and add
code to clean up local resources if it does

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 5 / 48



Exceptions Considered Harmful
How can you guarantee that calling function won’t throw an exception?

SML: Exceptional control flow built into the type, see letcc.
C++: Function can optionally be annotated with noexcept keyword
Most Other Languages With Exceptions (Python, Java, etc.): Sorry bro ur
out of luck, read the docs ig

How do you release resources if an exception is thrown?

Garbage collected languages: same as usual
C++: Need to treat every non-noexcept function like it could throw and add
code to clean up local resources if it does

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 5 / 48



Exceptions Considered Harmful
How can you guarantee that calling function won’t throw an exception?

SML: Exceptional control flow built into the type, see letcc.
C++: Function can optionally be annotated with noexcept keyword
Most Other Languages With Exceptions (Python, Java, etc.): Sorry bro ur
out of luck, read the docs ig

How do you release resources if an exception is thrown?
Garbage collected languages: same as usual

C++: Need to treat every non-noexcept function like it could throw and add
code to clean up local resources if it does

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 5 / 48



Exceptions Considered Harmful
How can you guarantee that calling function won’t throw an exception?

SML: Exceptional control flow built into the type, see letcc.
C++: Function can optionally be annotated with noexcept keyword
Most Other Languages With Exceptions (Python, Java, etc.): Sorry bro ur
out of luck, read the docs ig

How do you release resources if an exception is thrown?
Garbage collected languages: same as usual
C++: Need to treat every non-noexcept function like it could throw and add
code to clean up local resources if it does

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 5 / 48



What Do Exceptions Really Do, Anyways?

Return early from a function
Let the caller know the operation didn’t succeed
Propogate through layers of the stack
Stop the program if not handled somewhere

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 6 / 48



What Do Exceptions Really Do, Anyways?
Return early from a function

Let the caller know the operation didn’t succeed
Propogate through layers of the stack
Stop the program if not handled somewhere

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 6 / 48



What Do Exceptions Really Do, Anyways?
Return early from a function
Let the caller know the operation didn’t succeed

Propogate through layers of the stack
Stop the program if not handled somewhere

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 6 / 48



What Do Exceptions Really Do, Anyways?
Return early from a function
Let the caller know the operation didn’t succeed
Propogate through layers of the stack

Stop the program if not handled somewhere

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 6 / 48



What Do Exceptions Really Do, Anyways?
Return early from a function
Let the caller know the operation didn’t succeed
Propogate through layers of the stack
Stop the program if not handled somewhere

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 6 / 48



This Can Be Done With Types!
Rust’s approach: return type encodes both success and failure possibilities

enum Result<V, E> {
Ok(V),
Err(E),

}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 7 / 48



We Have Cool Syntax, Too
The ? operator is very nice.

let x = returns_result()?;

will de-sugar to

let x = match returns_result() {
Ok(v) => v,
Err(e) => return Err(e.into()),

}

Note this means you can only use ? inside a function that also returns a
Result<V, E2> where E2 impl From<E>.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 8 / 48



We Have Cool Syntax, Too
The ? operator is very nice.

let x = returns_result()?;

will de-sugar to

let x = match returns_result() {
Ok(v) => v,
Err(e) => return Err(e.into()),

}

Note this means you can only use ? inside a function that also returns a
Result<V, E2> where E2 impl From<E>.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 8 / 48



We Have Cool Syntax, Too
The ? operator is very nice.

let x = returns_result()?;

will de-sugar to

let x = match returns_result() {
Ok(v) => v,
Err(e) => return Err(e.into()),

}

Note this means you can only use ? inside a function that also returns a
Result<V, E2> where E2 impl From<E>.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 8 / 48



Society If We Didn’t Have ?
fn parse_input1(s: &str)
-> Result<(i32, i32), std::num::ParseIntError> {

let v = s.split(" ").collect::<Vec<_>>();
match v[0].parse::<i32>() {

Ok(a) => match v[1].parse::<i32>() {
Ok(b) => Ok((a, b)),
Err(e) => Err(e),

},
Err(e) => Err(e),

}
}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 9 / 48



Society Because We Have ?
fn parse_input2(s: &str)
-> Result<(i32, i32), std::num::ParseIntError> {

let mut v = s.split(" ").collect::<Vec<_>>();
let a = v[0].parse::<i32>()?;
let b = v[1].parse::<i32>()?;
Ok((a, b))

}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 10 / 48



Why This Is Better Than Exceptions
It’s always explicit if a function can fail or not! Literally in the return type

? operator lets you know all the places a short-circuit return could happen
Must manually pattern match on the Result to check both cases
More code generated, similar to C++

The type of the function constraints possible failures. If it’s not a Result type,
the function will always succeed when it returns!

But, are we guaranteed that a function will return?

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 11 / 48



Why This Is Better Than Exceptions
It’s always explicit if a function can fail or not! Literally in the return type

? operator lets you know all the places a short-circuit return could happen

Must manually pattern match on the Result to check both cases
More code generated, similar to C++

The type of the function constraints possible failures. If it’s not a Result type,
the function will always succeed when it returns!

But, are we guaranteed that a function will return?

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 11 / 48



Why This Is Better Than Exceptions
It’s always explicit if a function can fail or not! Literally in the return type

? operator lets you know all the places a short-circuit return could happen
Must manually pattern match on the Result to check both cases

More code generated, similar to C++
The type of the function constraints possible failures. If it’s not a Result type,
the function will always succeed when it returns!

But, are we guaranteed that a function will return?

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 11 / 48



Why This Is Better Than Exceptions
It’s always explicit if a function can fail or not! Literally in the return type

? operator lets you know all the places a short-circuit return could happen
Must manually pattern match on the Result to check both cases
More code generated, similar to C++

The type of the function constraints possible failures. If it’s not a Result type,
the function will always succeed when it returns!

But, are we guaranteed that a function will return?

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 11 / 48



Why This Is Better Than Exceptions
It’s always explicit if a function can fail or not! Literally in the return type

? operator lets you know all the places a short-circuit return could happen
Must manually pattern match on the Result to check both cases
More code generated, similar to C++

The type of the function constraints possible failures. If it’s not a Result type,
the function will always succeed when it returns!

But, are we guaranteed that a function will return?

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 11 / 48



Why This Is Better Than Exceptions
It’s always explicit if a function can fail or not! Literally in the return type

? operator lets you know all the places a short-circuit return could happen
Must manually pattern match on the Result to check both cases
More code generated, similar to C++

The type of the function constraints possible failures. If it’s not a Result type,
the function will always succeed when it returns!

But, are we guaranteed that a function will return?

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 11 / 48



Outline

1 Error Handling

2 Panics

3 Testing

4 Advanced Testing Strategies

5 Homework

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 12 / 48



Main Classes Of Panics In Rust

Integer Overflow (debug mode only)
Out-of-bounds slice index
Any panic! statement

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 13 / 48



Main Classes Of Panics In Rust
Integer Overflow (debug mode only)

Out-of-bounds slice index
Any panic! statement

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 13 / 48



Main Classes Of Panics In Rust
Integer Overflow (debug mode only)
Out-of-bounds slice index

Any panic! statement

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 13 / 48



Main Classes Of Panics In Rust
Integer Overflow (debug mode only)
Out-of-bounds slice index
Any panic! statement

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 13 / 48



Integer Overflow Panics

Raised whenever an operation would result in value outside bounds of type

u64::MAX + 98
i32::MIN * -1

Only checked in debug builds; release builds will use 2’s complement wrapping,
usually provided by the hardware
Divide by zero always panics

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 14 / 48



Integer Overflow Panics
Raised whenever an operation would result in value outside bounds of type

u64::MAX + 98
i32::MIN * -1

Only checked in debug builds; release builds will use 2’s complement wrapping,
usually provided by the hardware
Divide by zero always panics

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 14 / 48



Integer Overflow Panics
Raised whenever an operation would result in value outside bounds of type

u64::MAX + 98

i32::MIN * -1
Only checked in debug builds; release builds will use 2’s complement wrapping,
usually provided by the hardware
Divide by zero always panics

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 14 / 48



Integer Overflow Panics
Raised whenever an operation would result in value outside bounds of type

u64::MAX + 98
i32::MIN * -1

Only checked in debug builds; release builds will use 2’s complement wrapping,
usually provided by the hardware
Divide by zero always panics

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 14 / 48



Integer Overflow Panics
Raised whenever an operation would result in value outside bounds of type

u64::MAX + 98
i32::MIN * -1

Only checked in debug builds; release builds will use 2’s complement wrapping,
usually provided by the hardware

Divide by zero always panics

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 14 / 48



Integer Overflow Panics
Raised whenever an operation would result in value outside bounds of type

u64::MAX + 98
i32::MIN * -1

Only checked in debug builds; release builds will use 2’s complement wrapping,
usually provided by the hardware
Divide by zero always panics

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 14 / 48



Explicitly Allowing Integer Overflow
You can manually use wrapping functions directly on the type:

assert_eq!(255u8.wrapping_add(5u8), 4u8);

Or, use a transparent Wrapping<T> struct that has std::ops::Add and such
implemented for all numeric T:

assert_eq!(Wrapping(255u8) + Wrapping(5u8), Wrapping(4u8));

This wrapper is zero-cost thanks to #[repr(transparent)]

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 15 / 48



What About Floating Point?
What about floating point? :)

All floating point errors result in inf or NaN values, which can be checked with
.is_inf() or .is_nan() if necessary.
This is IEEE 754 compliant, fortunately they realized that crashing due to zero division
wasn’t the best option in all cases :)

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 16 / 48



What About Floating Point?
What about floating point? :)
All floating point errors result in inf or NaN values, which can be checked with
.is_inf() or .is_nan() if necessary.
This is IEEE 754 compliant, fortunately they realized that crashing due to zero division
wasn’t the best option in all cases :)

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 16 / 48



Out-Of-Bounds Panics
fn main() {

let x = [1, 2, 3];
println!("{}", x[99]);

}

If this was written in C, what would this code do?
Logically, what should this code do?
Fun note: simple “unconditional panics” like this are detected at compile time

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 17 / 48



Out-Of-Bounds Panics
fn main() {

let x = [1, 2, 3];
println!("{}", x[99]);

}

If this was written in C, what would this code do?

Logically, what should this code do?
Fun note: simple “unconditional panics” like this are detected at compile time

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 17 / 48



Out-Of-Bounds Panics
fn main() {

let x = [1, 2, 3];
println!("{}", x[99]);

}

If this was written in C, what would this code do?
Logically, what should this code do?

Fun note: simple “unconditional panics” like this are detected at compile time

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 17 / 48



Out-Of-Bounds Panics
fn main() {

let x = [1, 2, 3];
println!("{}", x[99]);

}

If this was written in C, what would this code do?
Logically, what should this code do?
Fun note: simple “unconditional panics” like this are detected at compile time

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 17 / 48



The panic! Statement
Use this when you purposely want to cause a panic

Detect extremely unexpected conditions that would nevertheless result in an error
Enforce invariants when creating structure or calling function

struct Bounded<const LOW: usize, const HIGH: usize>(usize);
impl<const LOW: usize, const HIGH: usize> Bounded<LOW, HIGH> {

fn new(x: usize) -> Self {
if !(LOW <= x && x <= HIGH) {

panic!("{x} was not in the range [{LOW}, {HIGH}]!");
}
Self(x)

}
}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 18 / 48



The panic! Statement
Use this when you purposely want to cause a panic

Detect extremely unexpected conditions that would nevertheless result in an error

Enforce invariants when creating structure or calling function

struct Bounded<const LOW: usize, const HIGH: usize>(usize);
impl<const LOW: usize, const HIGH: usize> Bounded<LOW, HIGH> {

fn new(x: usize) -> Self {
if !(LOW <= x && x <= HIGH) {

panic!("{x} was not in the range [{LOW}, {HIGH}]!");
}
Self(x)

}
}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 18 / 48



The panic! Statement
Use this when you purposely want to cause a panic

Detect extremely unexpected conditions that would nevertheless result in an error
Enforce invariants when creating structure or calling function

struct Bounded<const LOW: usize, const HIGH: usize>(usize);
impl<const LOW: usize, const HIGH: usize> Bounded<LOW, HIGH> {

fn new(x: usize) -> Self {
if !(LOW <= x && x <= HIGH) {

panic!("{x} was not in the range [{LOW}, {HIGH}]!");
}
Self(x)

}
}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 18 / 48



The panic! Statement
Use this when you purposely want to cause a panic

Detect extremely unexpected conditions that would nevertheless result in an error
Enforce invariants when creating structure or calling function

struct Bounded<const LOW: usize, const HIGH: usize>(usize);
impl<const LOW: usize, const HIGH: usize> Bounded<LOW, HIGH> {

fn new(x: usize) -> Self {
if !(LOW <= x && x <= HIGH) {

panic!("{x} was not in the range [{LOW}, {HIGH}]!");
}
Self(x)

}
}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 18 / 48



Friends of the panic! Statement

assert!, assert_eq!, and assert_ne! for condition panics if invariants not met
debug_* versions of the above for asserts that only happen during debug builds
todo! to signal code isn’t finished yet
unimplemented! to signal code will not be implemented
unreachable! to signal to the compiler that it can optimize away this
branch/check. Use very judiciously!

So many flavors to choose from! yummy

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 19 / 48



Friends of the panic! Statement
assert!, assert_eq!, and assert_ne! for condition panics if invariants not met

debug_* versions of the above for asserts that only happen during debug builds
todo! to signal code isn’t finished yet
unimplemented! to signal code will not be implemented
unreachable! to signal to the compiler that it can optimize away this
branch/check. Use very judiciously!

So many flavors to choose from! yummy

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 19 / 48



Friends of the panic! Statement
assert!, assert_eq!, and assert_ne! for condition panics if invariants not met
debug_* versions of the above for asserts that only happen during debug builds

todo! to signal code isn’t finished yet
unimplemented! to signal code will not be implemented
unreachable! to signal to the compiler that it can optimize away this
branch/check. Use very judiciously!

So many flavors to choose from! yummy

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 19 / 48



Friends of the panic! Statement
assert!, assert_eq!, and assert_ne! for condition panics if invariants not met
debug_* versions of the above for asserts that only happen during debug builds
todo! to signal code isn’t finished yet

unimplemented! to signal code will not be implemented
unreachable! to signal to the compiler that it can optimize away this
branch/check. Use very judiciously!

So many flavors to choose from! yummy

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 19 / 48



Friends of the panic! Statement
assert!, assert_eq!, and assert_ne! for condition panics if invariants not met
debug_* versions of the above for asserts that only happen during debug builds
todo! to signal code isn’t finished yet
unimplemented! to signal code will not be implemented

unreachable! to signal to the compiler that it can optimize away this
branch/check. Use very judiciously!

So many flavors to choose from! yummy

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 19 / 48



Friends of the panic! Statement
assert!, assert_eq!, and assert_ne! for condition panics if invariants not met
debug_* versions of the above for asserts that only happen during debug builds
todo! to signal code isn’t finished yet
unimplemented! to signal code will not be implemented
unreachable! to signal to the compiler that it can optimize away this
branch/check. Use very judiciously!

So many flavors to choose from! yummy

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 19 / 48



Friends of the panic! Statement
assert!, assert_eq!, and assert_ne! for condition panics if invariants not met
debug_* versions of the above for asserts that only happen during debug builds
todo! to signal code isn’t finished yet
unimplemented! to signal code will not be implemented
unreachable! to signal to the compiler that it can optimize away this
branch/check. Use very judiciously!

So many flavors to choose from! yummy

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 19 / 48



Outline

1 Error Handling

2 Panics

3 Testing

4 Advanced Testing Strategies

5 Homework

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 20 / 48



The #[test] Annotation
This is a compiler macro, marking a function defined anywhere in a crate to be run as
part of a test suite during cargo test

#[test]
fn test1() {

assert_eq!(9 + 10, 21);
}

Tests pass if they run to completion without panicking; conversely, panics signal test
failure.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 21 / 48



Using #[test] With Results
This is a thing you can do!

#[test]
fn test2() -> Result<(), String> {

Err("oh no! my test! it's broken!".to_string())
}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 22 / 48



What cargo test Looks Like When This Is Run
running 2 tests
test test2 ... FAILED
test test1 ... FAILED
failures:
---- test2 stdout ----
Error: "oh no! my test! it's broken!"
thread 'test2' panicked at 'assertion failed: `(left == right)`
left: `1`,
right: `0`: the test returned a termination value with a non-zero status code (1) which indicates a failure', /rustc/9d1b2106e23b1abd32fce1f17267604a5102f57a/library/test/src/lib.rs:186:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
---- test1 stdout ----
thread 'test1' panicked at 'assertion failed: `(left == right)`
left: `19`,
right: `21`', src/lib.rs:3:5

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 23 / 48



Sometimes, You #[should_panic]
You can use this annotation to test for error cases where you expect panics:

#[test]
#[should_panic]
fn test3() {

let x: u64 = None.unwrap();
}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 24 / 48



Recommended Practice: Making A “Test
Module”
#[cfg(test)]
mod test {

use super::*;
#[test]
fn test1() { ... }

}

Why? Test functions shouldn’t be used in other code (because they could panic),
so if not compiled with cargo test, these test functions will generate “unused
function” warnings.
Adding #[cfg(test)] makes the entire module and all functions inside only ever
defined in test mode, easier than annotating all of them.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 25 / 48



Recommended Practice: Making A “Test
Module”
#[cfg(test)]
mod test {

use super::*;
#[test]
fn test1() { ... }

}

Why? Test functions shouldn’t be used in other code (because they could panic),
so if not compiled with cargo test, these test functions will generate “unused
function” warnings.

Adding #[cfg(test)] makes the entire module and all functions inside only ever
defined in test mode, easier than annotating all of them.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 25 / 48



Recommended Practice: Making A “Test
Module”
#[cfg(test)]
mod test {

use super::*;
#[test]
fn test1() { ... }

}

Why? Test functions shouldn’t be used in other code (because they could panic),
so if not compiled with cargo test, these test functions will generate “unused
function” warnings.
Adding #[cfg(test)] makes the entire module and all functions inside only ever
defined in test mode, easier than annotating all of them.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 25 / 48



Things You Generally Want To Test

Simple cases that work as expected (“unit testing”)
Edge cases handled gracefully
Serialization/deserialization is invertible
Internally/externally asserted invariants hold

There’s a whole field about Test Driven Development and other best testing practices
and I don’t really know enough to say much confidently on this subject :P

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 26 / 48



Things You Generally Want To Test
Simple cases that work as expected (“unit testing”)

Edge cases handled gracefully
Serialization/deserialization is invertible
Internally/externally asserted invariants hold

There’s a whole field about Test Driven Development and other best testing practices
and I don’t really know enough to say much confidently on this subject :P

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 26 / 48



Things You Generally Want To Test
Simple cases that work as expected (“unit testing”)
Edge cases handled gracefully

Serialization/deserialization is invertible
Internally/externally asserted invariants hold

There’s a whole field about Test Driven Development and other best testing practices
and I don’t really know enough to say much confidently on this subject :P

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 26 / 48



Things You Generally Want To Test
Simple cases that work as expected (“unit testing”)
Edge cases handled gracefully
Serialization/deserialization is invertible

Internally/externally asserted invariants hold
There’s a whole field about Test Driven Development and other best testing practices
and I don’t really know enough to say much confidently on this subject :P

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 26 / 48



Things You Generally Want To Test
Simple cases that work as expected (“unit testing”)
Edge cases handled gracefully
Serialization/deserialization is invertible
Internally/externally asserted invariants hold

There’s a whole field about Test Driven Development and other best testing practices
and I don’t really know enough to say much confidently on this subject :P

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 26 / 48



Things You Generally Want To Test
Simple cases that work as expected (“unit testing”)
Edge cases handled gracefully
Serialization/deserialization is invertible
Internally/externally asserted invariants hold

There’s a whole field about Test Driven Development and other best testing practices
and I don’t really know enough to say much confidently on this subject :P

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 26 / 48



Upgrading To cargo nexttest

From the cargo-nexttest binary crate, install with
cargo install cargo-nexttest or put a binary release in your path
Runs tests in parallel, nicer interface
Allows checking for flaky tests

Flaky test: test that sometimes succeeds, sometimes fails (!)
Yes, this does mean Rust doesn’t solve all ur software dev woes

See docs at https://nexte.st/index.html

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 27 / 48

https://nexte.st/index.html


Upgrading To cargo nexttest
From the cargo-nexttest binary crate, install with
cargo install cargo-nexttest or put a binary release in your path

Runs tests in parallel, nicer interface
Allows checking for flaky tests

Flaky test: test that sometimes succeeds, sometimes fails (!)
Yes, this does mean Rust doesn’t solve all ur software dev woes

See docs at https://nexte.st/index.html

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 27 / 48

https://nexte.st/index.html


Upgrading To cargo nexttest
From the cargo-nexttest binary crate, install with
cargo install cargo-nexttest or put a binary release in your path
Runs tests in parallel, nicer interface

Allows checking for flaky tests

Flaky test: test that sometimes succeeds, sometimes fails (!)
Yes, this does mean Rust doesn’t solve all ur software dev woes

See docs at https://nexte.st/index.html

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 27 / 48

https://nexte.st/index.html


Upgrading To cargo nexttest
From the cargo-nexttest binary crate, install with
cargo install cargo-nexttest or put a binary release in your path
Runs tests in parallel, nicer interface
Allows checking for flaky tests

Flaky test: test that sometimes succeeds, sometimes fails (!)
Yes, this does mean Rust doesn’t solve all ur software dev woes

See docs at https://nexte.st/index.html

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 27 / 48

https://nexte.st/index.html


Upgrading To cargo nexttest
From the cargo-nexttest binary crate, install with
cargo install cargo-nexttest or put a binary release in your path
Runs tests in parallel, nicer interface
Allows checking for flaky tests

Flaky test: test that sometimes succeeds, sometimes fails (!)

Yes, this does mean Rust doesn’t solve all ur software dev woes
See docs at https://nexte.st/index.html

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 27 / 48

https://nexte.st/index.html


Upgrading To cargo nexttest
From the cargo-nexttest binary crate, install with
cargo install cargo-nexttest or put a binary release in your path
Runs tests in parallel, nicer interface
Allows checking for flaky tests

Flaky test: test that sometimes succeeds, sometimes fails (!)
Yes, this does mean Rust doesn’t solve all ur software dev woes

See docs at https://nexte.st/index.html

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 27 / 48

https://nexte.st/index.html


Upgrading To cargo nexttest
From the cargo-nexttest binary crate, install with
cargo install cargo-nexttest or put a binary release in your path
Runs tests in parallel, nicer interface
Allows checking for flaky tests

Flaky test: test that sometimes succeeds, sometimes fails (!)
Yes, this does mean Rust doesn’t solve all ur software dev woes

See docs at https://nexte.st/index.html

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 27 / 48

https://nexte.st/index.html


Outline

1 Error Handling

2 Panics

3 Testing

4 Advanced Testing Strategies

5 Homework

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 28 / 48



Advanced Testing Strategies

Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties
Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths

Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Formal Verification: mathematically prove that code meets some specification

Requires a specification to verify against, may have more limitations than other
testing methods

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 29 / 48



Advanced Testing Strategies
Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties
Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths

Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Formal Verification: mathematically prove that code meets some specification

Requires a specification to verify against, may have more limitations than other
testing methods

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 29 / 48



Advanced Testing Strategies
Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties

Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths

Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Formal Verification: mathematically prove that code meets some specification

Requires a specification to verify against, may have more limitations than other
testing methods

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 29 / 48



Advanced Testing Strategies
Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties
Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths

Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Formal Verification: mathematically prove that code meets some specification

Requires a specification to verify against, may have more limitations than other
testing methods

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 29 / 48



Advanced Testing Strategies
Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties
Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths

Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Formal Verification: mathematically prove that code meets some specification

Requires a specification to verify against, may have more limitations than other
testing methods

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 29 / 48



Advanced Testing Strategies
Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties
Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths
Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Formal Verification: mathematically prove that code meets some specification

Requires a specification to verify against, may have more limitations than other
testing methods

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 29 / 48



Advanced Testing Strategies
Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties
Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths
Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Formal Verification: mathematically prove that code meets some specification

Requires a specification to verify against, may have more limitations than other
testing methods

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 29 / 48



Advanced Testing Strategies
Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties
Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths
Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Formal Verification: mathematically prove that code meets some specification
Requires a specification to verify against, may have more limitations than other
testing methods

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 29 / 48



Crates for Property-Based Testing

proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck

Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero

More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck

Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero

More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)

Can make different input ranges/properties per-value
quickcheck

Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero

More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck

Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero

More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck

Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero

More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck
Inspired by QuickCheck (Haskell)

Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero

More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck
Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero

More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck
Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero

More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck
Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero
More fuzzing-like, also has generators similar to quickcheck

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 30 / 48

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck


Crates For Fuzzing

cargo-fuzz: based on LLVM’s LibFuzzer
afl and cargo-libafl: based on ”American Fuzzy Lop”, and old yet popular
fuzzing library
bolero: supports both those backends, plus Honggfuzz

All of these are x86_64 Linux or x86_64 MacOs only :(

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 31 / 48



Crates For Fuzzing
cargo-fuzz: based on LLVM’s LibFuzzer

afl and cargo-libafl: based on ”American Fuzzy Lop”, and old yet popular
fuzzing library
bolero: supports both those backends, plus Honggfuzz

All of these are x86_64 Linux or x86_64 MacOs only :(

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 31 / 48



Crates For Fuzzing
cargo-fuzz: based on LLVM’s LibFuzzer
afl and cargo-libafl: based on ”American Fuzzy Lop”, and old yet popular
fuzzing library

bolero: supports both those backends, plus Honggfuzz
All of these are x86_64 Linux or x86_64 MacOs only :(

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 31 / 48



Crates For Fuzzing
cargo-fuzz: based on LLVM’s LibFuzzer
afl and cargo-libafl: based on ”American Fuzzy Lop”, and old yet popular
fuzzing library
bolero: supports both those backends, plus Honggfuzz

All of these are x86_64 Linux or x86_64 MacOs only :(

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 31 / 48



Crates For Fuzzing
cargo-fuzz: based on LLVM’s LibFuzzer
afl and cargo-libafl: based on ”American Fuzzy Lop”, and old yet popular
fuzzing library
bolero: supports both those backends, plus Honggfuzz

All of these are x86_64 Linux or x86_64 MacOs only :(

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 31 / 48



Crates for Fuzzing Multithreaded Code
Sometimes it’s important to check interleavings too!

loom: “Runs tests many times, permuting the possible concurrent executions of
each test according to the C11 memory model”

Has special magic to reduce combinatorial explosion
Magic has limits resulting in both false positives and false negatives

shuttle: Randomized concurrency testing

Not exhaustive, but heuristics give probabilistic guarantees

Both require substituting in std::sync and std::thread libraries for custom versions
with the same API, need to use conditional compilation tricks.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 32 / 48



Crates for Fuzzing Multithreaded Code
Sometimes it’s important to check interleavings too!

loom: “Runs tests many times, permuting the possible concurrent executions of
each test according to the C11 memory model”

Has special magic to reduce combinatorial explosion
Magic has limits resulting in both false positives and false negatives

shuttle: Randomized concurrency testing

Not exhaustive, but heuristics give probabilistic guarantees

Both require substituting in std::sync and std::thread libraries for custom versions
with the same API, need to use conditional compilation tricks.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 32 / 48



Crates for Fuzzing Multithreaded Code
Sometimes it’s important to check interleavings too!

loom: “Runs tests many times, permuting the possible concurrent executions of
each test according to the C11 memory model”

Has special magic to reduce combinatorial explosion

Magic has limits resulting in both false positives and false negatives
shuttle: Randomized concurrency testing

Not exhaustive, but heuristics give probabilistic guarantees

Both require substituting in std::sync and std::thread libraries for custom versions
with the same API, need to use conditional compilation tricks.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 32 / 48



Crates for Fuzzing Multithreaded Code
Sometimes it’s important to check interleavings too!

loom: “Runs tests many times, permuting the possible concurrent executions of
each test according to the C11 memory model”

Has special magic to reduce combinatorial explosion
Magic has limits resulting in both false positives and false negatives

shuttle: Randomized concurrency testing

Not exhaustive, but heuristics give probabilistic guarantees

Both require substituting in std::sync and std::thread libraries for custom versions
with the same API, need to use conditional compilation tricks.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 32 / 48



Crates for Fuzzing Multithreaded Code
Sometimes it’s important to check interleavings too!

loom: “Runs tests many times, permuting the possible concurrent executions of
each test according to the C11 memory model”

Has special magic to reduce combinatorial explosion
Magic has limits resulting in both false positives and false negatives

shuttle: Randomized concurrency testing

Not exhaustive, but heuristics give probabilistic guarantees
Both require substituting in std::sync and std::thread libraries for custom versions
with the same API, need to use conditional compilation tricks.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 32 / 48



Crates for Fuzzing Multithreaded Code
Sometimes it’s important to check interleavings too!

loom: “Runs tests many times, permuting the possible concurrent executions of
each test according to the C11 memory model”

Has special magic to reduce combinatorial explosion
Magic has limits resulting in both false positives and false negatives

shuttle: Randomized concurrency testing
Not exhaustive, but heuristics give probabilistic guarantees

Both require substituting in std::sync and std::thread libraries for custom versions
with the same API, need to use conditional compilation tricks.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 32 / 48



Crates for Fuzzing Multithreaded Code
Sometimes it’s important to check interleavings too!

loom: “Runs tests many times, permuting the possible concurrent executions of
each test according to the C11 memory model”

Has special magic to reduce combinatorial explosion
Magic has limits resulting in both false positives and false negatives

shuttle: Randomized concurrency testing
Not exhaustive, but heuristics give probabilistic guarantees

Both require substituting in std::sync and std::thread libraries for custom versions
with the same API, need to use conditional compilation tricks.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 32 / 48



Crates for Formal Verification

verus: Subset of Rust features, superset of Rust syntax, focused on 122-like
requires/ensures
kani: Model checking for no panics/certain classes of UB

Often complicated to use, lots of limitations, but quite powerful if it fits your usecase

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 33 / 48



Crates for Formal Verification
verus: Subset of Rust features, superset of Rust syntax, focused on 122-like
requires/ensures

kani: Model checking for no panics/certain classes of UB
Often complicated to use, lots of limitations, but quite powerful if it fits your usecase

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 33 / 48



Crates for Formal Verification
verus: Subset of Rust features, superset of Rust syntax, focused on 122-like
requires/ensures
kani: Model checking for no panics/certain classes of UB

Often complicated to use, lots of limitations, but quite powerful if it fits your usecase

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 33 / 48



Crates for Formal Verification
verus: Subset of Rust features, superset of Rust syntax, focused on 122-like
requires/ensures
kani: Model checking for no panics/certain classes of UB

Often complicated to use, lots of limitations, but quite powerful if it fits your usecase

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 33 / 48



Outline

1 Error Handling

2 Panics

3 Testing

4 Advanced Testing Strategies

5 Homework

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 34 / 48



Turn in Your Midterm!!
We need to submit grades for u by the 8th :)

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 35 / 48



Backup: Why Panic When We Have
Result?

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 36 / 48



Some Moral Reasons
Sometimes, it’s just really obnoxious

Having to check every single addition for overflow?
Every single allocation?
C/C++ people be like: ya ofc (or maybe not)
miss me with that tyvm

Sometimes, the error state is so irrecoverable that we shouldn’t bother handling
anyways

Allocations are usually a good example
When do you actually run out of memory on a modern system?

Some of Rust’s panics are ugly though (on indexing? really?) and libraries
sometimes over-use imo
See the official Rust Book section for a more balanced view

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 37 / 48

https://doc.rust-lang.org/book/ch09-03-to-panic-or-not-to-panic.html


Panics Are Sometimes Proved Away
The following code will (should, really) not have a panic check:

fn main() {
let x = vec![1, 2, 3, 4];
println!("{}", x[3]);

}

This isn’t a feature of Rust, but rather a feature of LLVM, so relying on this can be
fickle.

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 38 / 48



Not Actually A Reason: Runtime Cost
Both panics and Results need to be checked for!

panic: if condition doesn’t hold, jump to panic handler (often there are a bunch
with different source info and messages and stuff)
Result: branch depending on whether its Ok or Err.

Sometimes, all these extra panic handlers can result in more code than Results!
[citation needed]

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 39 / 48



Backup: The Try Trait

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 40 / 48



So How Does ? Work, Exactly?
What does it “desugar” to?
Can I add more types for it to work with?
Unfortunately we can’t answer either of these questions: currently, it’s an internal
compiler operation, only for Option and Result types
This is different from nearly ever other operator! + and >> and | have overloads,
even Deref!

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 41 / 48



Motivating Example: A Neat Type
A proposed type that ? could work with:

enum ControlFlow<B, C = ()> {
/// Exit the operation without running subsequent phases.
Break(B),
/// Move on to the next phase of the operation as normal.
Continue(C),

}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 42 / 48



Motivating Example: Some Clean Code
impl<T> TreeNode<T> {

fn traverse_inorder<B>(
&self,
mut f: impl FnMut(&T) -> ControlFlow<B>,

) -> ControlFlow<B> {
if let Some(left) = &self.left {

left.traverse_inorder(&mut f)?;
}
f(&self.value)?;
if let Some(right) = &self.right {

right.traverse_inorder(&mut f)?;
}
ControlFlow::Continue(())

}
}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 43 / 48



Terminology
At its core, the ? operator is about splitting a type and control flow into two parts:

The output that will be returned from the ?, where control flow continues as
normal, and
The residual that will be returned to calling code, as an early exit from the
normal flow.

Source for all this: https://rust-lang.github.io/rfcs/3058-try-trait-v2.html

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 44 / 48

https://rust-lang.github.io/rfcs/3058-try-trait-v2.html


Try Is Actually Two Traits
trait FromResidual<Residual = <Self as Try>::Residual> {

fn from_residual(r: Residual) -> Self;
}
trait Try: FromResidual {

type Output;
type Residual;
fn branch(self) -> ControlFlow<Self::Residual, Self::Output>;
fn from_output(o: Self::Output) -> Self;

}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 45 / 48



Why Have Two Traits?
This allows the residual of one erroring type to easily be turned into another output
error type, without also having to convert the outputs! Probably a common usecase:

impl<T, E: From<String>> FromResidual<ResultCodeResidual> for
Result<T, E> {

fn from_residual(r: ResultCodeResidual) -> Self {
Err(format!(

"Something fancy about {} at {:?}",
r.0,
std::time::SystemTime::now()

).into())
}

}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 46 / 48



Formalizing Desugaring: Sugared
fn<T1, T2> f(g: impl FnOnce() -> T2) -> T1

where T1: Try,
T2: FromResidual<T1::Residual>

{
let x = g();
let y = x?;
...

}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 47 / 48



Formalizing Desugaring: Desugared
fn<T1, T2> f(g: impl FnOnce() -> T2) -> T1

where T1: Try,
T2: FromResidual<T1::Residual>

{
let x = g();
let y = match T1::branch(x) {

ControlFlow::Continue(c) => c,
ControlFlow::Break(b) => { return T2::from_residual(b) }

};
...

}

Cooper Pierce & Jack Duvall Error Handling and Advanced Testing 1st March 2023 48 / 48


	Error Handling
	Panics
	Testing
	Advanced Testing Strategies
	Homework

