
unsafe Rust
Not Quite C

Jack Duvall & Cooper Pierce



Attendance

https://forms.gle/YAmrtAt8HK7XFiCNA

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 1 / 40

https://forms.gle/YAmrtAt8HK7XFiCNA


1 unsafe Features

2 Type Sizing

3 FFI
With C

bindgen
With C++

cxx

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 1 / 40



What is unsafe?
Rust, without some compiler checks

We can’t check lifetime validity for raw pointers
We might use memory or type-unsafe compiler-exposed functions
We might have uninitialised memory
We might have extra, uncheckable requirements to guaranteed soundness

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 2 / 40



What is unsafe?
Rust, without some compiler checks

We can’t check lifetime validity for raw pointers

We might use memory or type-unsafe compiler-exposed functions
We might have uninitialised memory
We might have extra, uncheckable requirements to guaranteed soundness

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 2 / 40



What is unsafe?
Rust, without some compiler checks

We can’t check lifetime validity for raw pointers
We might use memory or type-unsafe compiler-exposed functions

We might have uninitialised memory
We might have extra, uncheckable requirements to guaranteed soundness

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 2 / 40



What is unsafe?
Rust, without some compiler checks

We can’t check lifetime validity for raw pointers
We might use memory or type-unsafe compiler-exposed functions
We might have uninitialised memory

We might have extra, uncheckable requirements to guaranteed soundness

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 2 / 40



What is unsafe?
Rust, without some compiler checks

We can’t check lifetime validity for raw pointers
We might use memory or type-unsafe compiler-exposed functions
We might have uninitialised memory
We might have extra, uncheckable requirements to guaranteed soundness

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 2 / 40



Recall: Safety Guarantees
Using unsafe correctly won’t excuse us from any of the rules in “regular” Rust:

Values have one owner
References are valid (i.e., don’t dangle, correct lifetime, etc...)
Mutable (exclusive) references are exclusive
Values of a type have a memory layout consistent with that type, and aren’t in
some invalid state

unsafe may also have additional requirements to uphold if we’re calling an unsafe
function or implementing an unsafe trait, so that other code relying on some
behaviour down the line isn’t unsound.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 3 / 40



Recall: Safety Guarantees
Using unsafe correctly won’t excuse us from any of the rules in “regular” Rust:

Values have one owner

References are valid (i.e., don’t dangle, correct lifetime, etc...)
Mutable (exclusive) references are exclusive
Values of a type have a memory layout consistent with that type, and aren’t in
some invalid state

unsafe may also have additional requirements to uphold if we’re calling an unsafe
function or implementing an unsafe trait, so that other code relying on some
behaviour down the line isn’t unsound.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 3 / 40



Recall: Safety Guarantees
Using unsafe correctly won’t excuse us from any of the rules in “regular” Rust:

Values have one owner
References are valid (i.e., don’t dangle, correct lifetime, etc...)

Mutable (exclusive) references are exclusive
Values of a type have a memory layout consistent with that type, and aren’t in
some invalid state

unsafe may also have additional requirements to uphold if we’re calling an unsafe
function or implementing an unsafe trait, so that other code relying on some
behaviour down the line isn’t unsound.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 3 / 40



Recall: Safety Guarantees
Using unsafe correctly won’t excuse us from any of the rules in “regular” Rust:

Values have one owner
References are valid (i.e., don’t dangle, correct lifetime, etc...)
Mutable (exclusive) references are exclusive

Values of a type have a memory layout consistent with that type, and aren’t in
some invalid state

unsafe may also have additional requirements to uphold if we’re calling an unsafe
function or implementing an unsafe trait, so that other code relying on some
behaviour down the line isn’t unsound.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 3 / 40



Recall: Safety Guarantees
Using unsafe correctly won’t excuse us from any of the rules in “regular” Rust:

Values have one owner
References are valid (i.e., don’t dangle, correct lifetime, etc...)
Mutable (exclusive) references are exclusive
Values of a type have a memory layout consistent with that type, and aren’t in
some invalid state

unsafe may also have additional requirements to uphold if we’re calling an unsafe
function or implementing an unsafe trait, so that other code relying on some
behaviour down the line isn’t unsound.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 3 / 40



Recall: Safety Guarantees
Using unsafe correctly won’t excuse us from any of the rules in “regular” Rust:

Values have one owner
References are valid (i.e., don’t dangle, correct lifetime, etc...)
Mutable (exclusive) references are exclusive
Values of a type have a memory layout consistent with that type, and aren’t in
some invalid state

unsafe may also have additional requirements to uphold if we’re calling an unsafe
function or implementing an unsafe trait, so that other code relying on some
behaviour down the line isn’t unsound.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 3 / 40



Soundness
Because we’re using the word unsafe to mean code that has access to some extra
abilities (more on these in a second), it will be useful to have another term which
means our code in unsafe blocks is correct.

We’ll say code is sound if it cannot cause undefined behaviour, and unsound
otherwise—regardless of whether or not the failure point is in the unsafe section or
not.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 4 / 40



Undefined Behaviour in Rust

Dereferencing (using the * operator on) dangling or unaligned pointers (see below)
Breaking the pointer aliasing rules
Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.
Causing a data race
Executing code compiled with target features that the current thread of execution
does not support
Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



Undefined Behaviour in Rust
Dereferencing (using the * operator on) dangling or unaligned pointers (see below)

Breaking the pointer aliasing rules
Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.
Causing a data race
Executing code compiled with target features that the current thread of execution
does not support
Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



Undefined Behaviour in Rust
Dereferencing (using the * operator on) dangling or unaligned pointers (see below)
Breaking the pointer aliasing rules

Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.
Causing a data race
Executing code compiled with target features that the current thread of execution
does not support
Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



Undefined Behaviour in Rust
Dereferencing (using the * operator on) dangling or unaligned pointers (see below)
Breaking the pointer aliasing rules
Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.

Causing a data race
Executing code compiled with target features that the current thread of execution
does not support
Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



Undefined Behaviour in Rust
Dereferencing (using the * operator on) dangling or unaligned pointers (see below)
Breaking the pointer aliasing rules
Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.
Causing a data race

Executing code compiled with target features that the current thread of execution
does not support
Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



Undefined Behaviour in Rust
Dereferencing (using the * operator on) dangling or unaligned pointers (see below)
Breaking the pointer aliasing rules
Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.
Causing a data race
Executing code compiled with target features that the current thread of execution
does not support

Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



Undefined Behaviour in Rust
Dereferencing (using the * operator on) dangling or unaligned pointers (see below)
Breaking the pointer aliasing rules
Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.
Causing a data race
Executing code compiled with target features that the current thread of execution
does not support
Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html

Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



Undefined Behaviour in Rust
Dereferencing (using the * operator on) dangling or unaligned pointers (see below)
Breaking the pointer aliasing rules
Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.
Causing a data race
Executing code compiled with target features that the current thread of execution
does not support
Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



Undefined Behaviour in Rust
Dereferencing (using the * operator on) dangling or unaligned pointers (see below)
Breaking the pointer aliasing rules
Calling a function with the wrong call ABI or unwinding from a function with the
wrong unwind ABI.
Causing a data race
Executing code compiled with target features that the current thread of execution
does not support
Producing invalid values (either alone or as a field of a compound type such as
enum/struct/array/tuple): see
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
Violating the
https://doc.rust-lang.org/reference/inline-assembly.html#rules-for-inline-assembly
for inline assembly.

This list isn’t exhaustive and some items are still up for debate, but all in all a lot less
than C.
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 5 / 40



unsafe Powers
So what abilities does unsafe grant us?

In unsafe code we can:

Dereference a raw pointer
Call an unsafe function
Implement an unsafe trait
Access fields in a union
Reading from or writing to a static mut variable

What might be some use cases for these?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 6 / 40



unsafe Powers
So what abilities does unsafe grant us?

In unsafe code we can:
Dereference a raw pointer

Call an unsafe function
Implement an unsafe trait
Access fields in a union
Reading from or writing to a static mut variable

What might be some use cases for these?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 6 / 40



unsafe Powers
So what abilities does unsafe grant us?

In unsafe code we can:
Dereference a raw pointer
Call an unsafe function

Implement an unsafe trait
Access fields in a union
Reading from or writing to a static mut variable

What might be some use cases for these?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 6 / 40



unsafe Powers
So what abilities does unsafe grant us?

In unsafe code we can:
Dereference a raw pointer
Call an unsafe function
Implement an unsafe trait

Access fields in a union
Reading from or writing to a static mut variable

What might be some use cases for these?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 6 / 40



unsafe Powers
So what abilities does unsafe grant us?

In unsafe code we can:
Dereference a raw pointer
Call an unsafe function
Implement an unsafe trait
Access fields in a union

Reading from or writing to a static mut variable

What might be some use cases for these?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 6 / 40



unsafe Powers
So what abilities does unsafe grant us?

In unsafe code we can:
Dereference a raw pointer
Call an unsafe function
Implement an unsafe trait
Access fields in a union
Reading from or writing to a static mut variable

What might be some use cases for these?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 6 / 40



unsafe Powers
So what abilities does unsafe grant us?

In unsafe code we can:
Dereference a raw pointer
Call an unsafe function
Implement an unsafe trait
Access fields in a union
Reading from or writing to a static mut variable

What might be some use cases for these?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 6 / 40



Rust Has Pointers?
There are two pointer types in Rust:

*mut T
*const T

Raw pointers have less guarantees than other types:

aren’t checked by the borrow checker (cf. references)
they aren’t guaranteed to point to valid memory (cf. references)
they aren’t guaranteed to be aligned (cf. references)
don’t handle cleaning up the underlying resource (cf. owned values)

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 7 / 40



Rust Has Pointers?
There are two pointer types in Rust:

*mut T
*const T

Raw pointers have less guarantees than other types:
aren’t checked by the borrow checker (cf. references)

they aren’t guaranteed to point to valid memory (cf. references)
they aren’t guaranteed to be aligned (cf. references)
don’t handle cleaning up the underlying resource (cf. owned values)

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 7 / 40



Rust Has Pointers?
There are two pointer types in Rust:

*mut T
*const T

Raw pointers have less guarantees than other types:
aren’t checked by the borrow checker (cf. references)
they aren’t guaranteed to point to valid memory (cf. references)

they aren’t guaranteed to be aligned (cf. references)
don’t handle cleaning up the underlying resource (cf. owned values)

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 7 / 40



Rust Has Pointers?
There are two pointer types in Rust:

*mut T
*const T

Raw pointers have less guarantees than other types:
aren’t checked by the borrow checker (cf. references)
they aren’t guaranteed to point to valid memory (cf. references)
they aren’t guaranteed to be aligned (cf. references)

don’t handle cleaning up the underlying resource (cf. owned values)

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 7 / 40



Rust Has Pointers?
There are two pointer types in Rust:

*mut T
*const T

Raw pointers have less guarantees than other types:
aren’t checked by the borrow checker (cf. references)
they aren’t guaranteed to point to valid memory (cf. references)
they aren’t guaranteed to be aligned (cf. references)
don’t handle cleaning up the underlying resource (cf. owned values)

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 7 / 40



Using Raw Pointers
We we use a raw pointer we have to guarantee it is:

non-null
aligned
the read would be entirely contained within one allocation
and some other rules: see https://doc.rust-lang.org/std/ptr/index.html

let mut x = 42;
let x_ptr = &mut x as *mut i32;

unsafe {
*x_ptr += 27;

}

assert_eq!(x, 69);

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 8 / 40

https://doc.rust-lang.org/std/ptr/index.html


Using Raw Pointers
We we use a raw pointer we have to guarantee it is:

non-null

aligned
the read would be entirely contained within one allocation
and some other rules: see https://doc.rust-lang.org/std/ptr/index.html

let mut x = 42;
let x_ptr = &mut x as *mut i32;

unsafe {
*x_ptr += 27;

}

assert_eq!(x, 69);

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 8 / 40

https://doc.rust-lang.org/std/ptr/index.html


Using Raw Pointers
We we use a raw pointer we have to guarantee it is:

non-null
aligned

the read would be entirely contained within one allocation
and some other rules: see https://doc.rust-lang.org/std/ptr/index.html

let mut x = 42;
let x_ptr = &mut x as *mut i32;

unsafe {
*x_ptr += 27;

}

assert_eq!(x, 69);

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 8 / 40

https://doc.rust-lang.org/std/ptr/index.html


Using Raw Pointers
We we use a raw pointer we have to guarantee it is:

non-null
aligned
the read would be entirely contained within one allocation

and some other rules: see https://doc.rust-lang.org/std/ptr/index.html

let mut x = 42;
let x_ptr = &mut x as *mut i32;

unsafe {
*x_ptr += 27;

}

assert_eq!(x, 69);

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 8 / 40

https://doc.rust-lang.org/std/ptr/index.html


Using Raw Pointers
We we use a raw pointer we have to guarantee it is:

non-null
aligned
the read would be entirely contained within one allocation
and some other rules: see https://doc.rust-lang.org/std/ptr/index.html

let mut x = 42;
let x_ptr = &mut x as *mut i32;

unsafe {
*x_ptr += 27;

}

assert_eq!(x, 69);

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 8 / 40

https://doc.rust-lang.org/std/ptr/index.html


Using Raw Pointers
We we use a raw pointer we have to guarantee it is:

non-null
aligned
the read would be entirely contained within one allocation
and some other rules: see https://doc.rust-lang.org/std/ptr/index.html

let mut x = 42;
let x_ptr = &mut x as *mut i32;

unsafe {
*x_ptr += 27;

}

assert_eq!(x, 69);

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 8 / 40

https://doc.rust-lang.org/std/ptr/index.html


Another Example
let address = 0x012345usize;
let r = address as *const i32;

// Oh boy, now we can read arbitrary memory
unsafe {
println!("{}", *r);

}

What does Miri have to say about this?

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=
e288775bda449a2edcaece3cc1e24211

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 9 / 40

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=e288775bda449a2edcaece3cc1e24211
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=e288775bda449a2edcaece3cc1e24211


Another Example
let address = 0x012345usize;
let r = address as *const i32;

// Oh boy, now we can read arbitrary memory
unsafe {
println!("{}", *r);

}

What does Miri have to say about this?

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=
e288775bda449a2edcaece3cc1e24211

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 9 / 40

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=e288775bda449a2edcaece3cc1e24211
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=e288775bda449a2edcaece3cc1e24211


Rust Has unions?
Like C, Rust has union types, mostly for FFI.
#[repr(C)]
enum ValKind { Int, Pointer }

#[repr(C)]
union ValContents {

i: i32,
p: *const std::ffi::c_void,

}

#[repr(C)]
struct Value {

kind: ValKind,
payload: ValContents,

}
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 10 / 40



Using a union
fn is_zero(Value { kind, payload } : Value) -> bool {

unsafe {
match kind {

ValKind::Int => payload.i == 0,
ValKind::Pointer => payload.p.is_null(),

}
}

}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 11 / 40



Rust Has static Variables?
Slightly different from const variables, which we haven’t talked about much:

actually corresponds to a location in the program
can take a reference to it
must be Send (shareable across threads)
can read from any non-mutable static variable without unsafe iff it is Sync

static VAR1: &'static str = "Hello";
static mut VAR2: &'static str = " World";

fn main() {
println!("{}", VAR1);
unsafe {

println!("{}", VAR2);
}

}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 12 / 40



Rust Has static Variables?
Slightly different from const variables, which we haven’t talked about much:

actually corresponds to a location in the program
can take a reference to it
must be Send (shareable across threads)
can read from any non-mutable static variable without unsafe iff it is Sync

static VAR1: &'static str = "Hello";
static mut VAR2: &'static str = " World";

fn main() {
println!("{}", VAR1);
unsafe {

println!("{}", VAR2);
}

}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 12 / 40



1 unsafe Features

2 Type Sizing

3 FFI
With C

bindgen
With C++

cxx

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 12 / 40



Zero Sized Types
There are a number of types in Rust which take up zero bytes!

()
enums with one variant
Unit-like structs
structs with entirely zero-sized fields

This is useful in some cases: something like a Set<T> can be implemented as a
Map<T, ()> and because the compiler knows the values are zero-sized, it can avoid
loads and stores to memory.
Likewise, something like Vec<()> can avoid allocating.
Sometimes, we do have to be careful about accounting for ZSTs in unsafe code,
because it means the size of a type might not give us a valid offset or alignment.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 13 / 40



Zero Sized Types
There are a number of types in Rust which take up zero bytes!

()
enums with one variant
Unit-like structs
structs with entirely zero-sized fields

This is useful in some cases: something like a Set<T> can be implemented as a
Map<T, ()> and because the compiler knows the values are zero-sized, it can avoid
loads and stores to memory.
Likewise, something like Vec<()> can avoid allocating.
Sometimes, we do have to be careful about accounting for ZSTs in unsafe code,
because it means the size of a type might not give us a valid offset or alignment.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 13 / 40



Dynamically Sized Types
We’ve already seen a couple of dynamically sized types:

dyn Trait
[T], str

These can’t be stored directly on the stack, because we don’t know their size at
compile time.

We say these types “don’t implement Sized”, which can be denoted as T: ?Sized.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 14 / 40



Dynamically Sized Types
We’ve already seen a couple of dynamically sized types:

dyn Trait

[T], str
These can’t be stored directly on the stack, because we don’t know their size at
compile time.

We say these types “don’t implement Sized”, which can be denoted as T: ?Sized.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 14 / 40



Dynamically Sized Types
We’ve already seen a couple of dynamically sized types:

dyn Trait
[T], str

These can’t be stored directly on the stack, because we don’t know their size at
compile time.

We say these types “don’t implement Sized”, which can be denoted as T: ?Sized.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 14 / 40



Dynamically Sized Types
We’ve already seen a couple of dynamically sized types:

dyn Trait
[T], str

These can’t be stored directly on the stack, because we don’t know their size at
compile time.

We say these types “don’t implement Sized”, which can be denoted as T: ?Sized.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 14 / 40



Dynamically Sized Types
structs are allowed to have a DST as their last field, and if so, will themselves be a
DST:

struct AllocBlock {
header: u64,
data: [u8],

}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 15 / 40



Layouts
Unlike C, Rust does not guarantee a specific data layout for your types, e.g.:

struct Foo {
i: i32,
f: f64,
j: i32,

}

might only take up 16 bytes, instead of 24! That said, all Foos will have the same
layout (for a given compiler version, subject to some other caveats).

... but what if I want a guaranteed layout because I’m doing something which relies on
it?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 16 / 40



Layouts
Unlike C, Rust does not guarantee a specific data layout for your types, e.g.:

struct Foo {
i: i32,
f: f64,
j: i32,

}

might only take up 16 bytes, instead of 24! That said, all Foos will have the same
layout (for a given compiler version, subject to some other caveats).

... but what if I want a guaranteed layout because I’m doing something which relies on
it?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 16 / 40



Specifying a Layout
There are a number of attributes we can use to ensure a specific layout:

Rust—the default
C—do what C does; not valid for some types
transparent—for one field structs1; do the same as that field.
packed—no padding; byte aligned
a couple more we won’t discuss, see here

To use one of these, we use an attribute:

#[repr(C)]
struct UnboundedArray<T> {

len: usize,
capacity: usize,
contents: *mut T,

}

1really, one non-zero sized field
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40

https://doc.rust-lang.org/nomicon/other-reprs.html


Specifying a Layout
There are a number of attributes we can use to ensure a specific layout:

Rust—the default

C—do what C does; not valid for some types
transparent—for one field structs1; do the same as that field.
packed—no padding; byte aligned
a couple more we won’t discuss, see here

To use one of these, we use an attribute:

#[repr(C)]
struct UnboundedArray<T> {

len: usize,
capacity: usize,
contents: *mut T,

}

1really, one non-zero sized field
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40

https://doc.rust-lang.org/nomicon/other-reprs.html


Specifying a Layout
There are a number of attributes we can use to ensure a specific layout:

Rust—the default
C—do what C does; not valid for some types

transparent—for one field structs1; do the same as that field.
packed—no padding; byte aligned
a couple more we won’t discuss, see here

To use one of these, we use an attribute:

#[repr(C)]
struct UnboundedArray<T> {

len: usize,
capacity: usize,
contents: *mut T,

}

1really, one non-zero sized field
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40

https://doc.rust-lang.org/nomicon/other-reprs.html


Specifying a Layout
There are a number of attributes we can use to ensure a specific layout:

Rust—the default
C—do what C does; not valid for some types
transparent—for one field structs1; do the same as that field.

packed—no padding; byte aligned
a couple more we won’t discuss, see here

To use one of these, we use an attribute:

#[repr(C)]
struct UnboundedArray<T> {

len: usize,
capacity: usize,
contents: *mut T,

}

1really, one non-zero sized field
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40

https://doc.rust-lang.org/nomicon/other-reprs.html


Specifying a Layout
There are a number of attributes we can use to ensure a specific layout:

Rust—the default
C—do what C does; not valid for some types
transparent—for one field structs1; do the same as that field.
packed—no padding; byte aligned

a couple more we won’t discuss, see here
To use one of these, we use an attribute:

#[repr(C)]
struct UnboundedArray<T> {

len: usize,
capacity: usize,
contents: *mut T,

}

1really, one non-zero sized field
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40

https://doc.rust-lang.org/nomicon/other-reprs.html


Specifying a Layout
There are a number of attributes we can use to ensure a specific layout:

Rust—the default
C—do what C does; not valid for some types
transparent—for one field structs1; do the same as that field.
packed—no padding; byte aligned
a couple more we won’t discuss, see here

To use one of these, we use an attribute:

#[repr(C)]
struct UnboundedArray<T> {

len: usize,
capacity: usize,
contents: *mut T,

}

1really, one non-zero sized field
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40

https://doc.rust-lang.org/nomicon/other-reprs.html


Specifying a Layout
There are a number of attributes we can use to ensure a specific layout:

Rust—the default
C—do what C does; not valid for some types
transparent—for one field structs1; do the same as that field.
packed—no padding; byte aligned
a couple more we won’t discuss, see here

To use one of these, we use an attribute:

#[repr(C)]
struct UnboundedArray<T> {

len: usize,
capacity: usize,
contents: *mut T,

}
1really, one non-zero sized field

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40

https://doc.rust-lang.org/nomicon/other-reprs.html


1 unsafe Features

2 Type Sizing

3 FFI
With C

bindgen
With C++

cxx

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40



With C

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 17 / 40



So You Want To Call C From Rust, Huh?
Conceptually, not too bad, just a few simple steps:

Declare what C functions are available
Link against the C library
Call the function, using unsafe

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 18 / 40



Review: Calling Conventions
a.k.a. the Application Binary Interface (ABI)

a.k.a. how to talk to other people (’s C code)

How are arguments passed?
What registers are clobbered?
How do you get the return value?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 19 / 40



Review: Calling Conventions
a.k.a. the Application Binary Interface (ABI)

a.k.a. how to talk to other people (’s C code)

How are arguments passed?
What registers are clobbered?
How do you get the return value?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 19 / 40



Review: Calling Conventions
a.k.a. the Application Binary Interface (ABI)

a.k.a. how to talk to other people (’s C code)

How are arguments passed?
What registers are clobbered?
How do you get the return value?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 19 / 40



Rust Supported Calling Conventions (via LLVM)
“Rust”—Rust’s own calling convention
“C”—(default) calling convention used by your C compiler
“system”—calling convention used by your OS, usually same as “C” except on
Win32 where it’s “stdcall”
“cdecl”—x86_32 calling convention
“stdcall”—Win32 x86_32 ABI
“win64”—x86_64 Windows ABI
“sysv64”—x86_64 non-Windows
“aapcs”—ARM
“fastcall”
“vectorcall”

See https://doc.rust-lang.org/reference/items/external-blocks.html for details.

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 20 / 40

https://doc.rust-lang.org/reference/items/external-blocks.html


External Linkage With extern
// Function we can link against
extern "C" {

fn my_other_c_function(x: i32, y: i32) -> i32;
}

// Function that we export and can be linked to
#[no_mangle]
extern "C" fn my_rust_function(x: i32, y: i32) -> i32 { ... }

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 21 / 40



Review1: Linkage
How can we link code?

Dynamic Linkage: “hey OS i want this library please load it when u launch me”

Pros: Smaller binary size, flexible to upgrade library
Cons: Code can’t handle upgrades in a significant number of cases

Static Linkage: “hey Compiler i want this library please put it next to my code”

Pros: You always get the library version you want
Cons: Upgrading requires re-compilation

1okay, probably not
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 22 / 40



Review1: Linkage
How can we link code?

Dynamic Linkage: “hey OS i want this library please load it when u launch me”

Pros: Smaller binary size, flexible to upgrade library
Cons: Code can’t handle upgrades in a significant number of cases

Static Linkage: “hey Compiler i want this library please put it next to my code”

Pros: You always get the library version you want
Cons: Upgrading requires re-compilation

1okay, probably not
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 22 / 40



Review1: Linkage
How can we link code?

Dynamic Linkage: “hey OS i want this library please load it when u launch me”
Pros: Smaller binary size, flexible to upgrade library

Cons: Code can’t handle upgrades in a significant number of cases
Static Linkage: “hey Compiler i want this library please put it next to my code”

Pros: You always get the library version you want
Cons: Upgrading requires re-compilation

1okay, probably not
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 22 / 40



Review1: Linkage
How can we link code?

Dynamic Linkage: “hey OS i want this library please load it when u launch me”
Pros: Smaller binary size, flexible to upgrade library
Cons: Code can’t handle upgrades in a significant number of cases

Static Linkage: “hey Compiler i want this library please put it next to my code”

Pros: You always get the library version you want
Cons: Upgrading requires re-compilation

1okay, probably not
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 22 / 40



Review1: Linkage
How can we link code?

Dynamic Linkage: “hey OS i want this library please load it when u launch me”
Pros: Smaller binary size, flexible to upgrade library
Cons: Code can’t handle upgrades in a significant number of cases

Static Linkage: “hey Compiler i want this library please put it next to my code”

Pros: You always get the library version you want
Cons: Upgrading requires re-compilation

1okay, probably not
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 22 / 40



Review1: Linkage
How can we link code?

Dynamic Linkage: “hey OS i want this library please load it when u launch me”
Pros: Smaller binary size, flexible to upgrade library
Cons: Code can’t handle upgrades in a significant number of cases

Static Linkage: “hey Compiler i want this library please put it next to my code”
Pros: You always get the library version you want

Cons: Upgrading requires re-compilation

1okay, probably not
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 22 / 40



Review1: Linkage
How can we link code?

Dynamic Linkage: “hey OS i want this library please load it when u launch me”
Pros: Smaller binary size, flexible to upgrade library
Cons: Code can’t handle upgrades in a significant number of cases

Static Linkage: “hey Compiler i want this library please put it next to my code”
Pros: You always get the library version you want
Cons: Upgrading requires re-compilation

1okay, probably not
Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 22 / 40



Specifying Linkage for extern C Functions
#[link(name = "foo")] // kind = "dylib"
extern {

fn cool_foo() -> *const u8;
}

#[link(name = "bar", kind = "static")]
extern {

fn cool_bar() -> *const u8;
}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 23 / 40



Things To Watch Out For
A couple of potential linking pitfalls:

Your compiler can find the library you’re linking against
For dynamic libraries, OS needs to find too!
For very fancy libraries, needs to be built by the same compiler!

Your definitions in Rust exactly match the definitions in C

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 24 / 40



bindgen

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 24 / 40



Idea: Computer, Write Rust FFI For Me
Steps:

Tell bindgen to make bindings at compile time
Use include! macro to textually include generated bindings
Link against C library
Call the functions using unsafe

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 25 / 40

https://rust-lang.github.io/rust-bindgen/


How Do We Do Stuff At Compile Time?
build.rs scripts!

Placed at root of package next to Cargo.toml
Run before Rust code compiled, can do arbitrary configuration since it’s a binary
itself
Special output used to control behavior of Cargo

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 26 / 40

https://doc.rust-lang.org/cargo/reference/build-scripts.html


Small build.rs Example
fn main() {

// Tell Cargo that if the given file changes, to rerun this
// build script.
println!("cargo:rerun-if-changed=src/hello.c");

// Use the `cc` crate to build a C file and statically link it.
cc::Build::new()

.file("src/hello.c")

.compile("hello");
}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 27 / 40



bindgen build.rs Example
fn main() {

println!("cargo:rustc-link-lib=bz2");
println!("cargo:rerun-if-changed=wrapper.h");
let bindings = bindgen::Builder::default()

.header("wrapper.h")

.parse_callbacks(Box::new(bindgen::CargoCallbacks))

.generate()

.expect("Unable to generate bindings");
let out_path = PathBuf::from(env::var("OUT_DIR").unwrap());
bindings

.write_to_file(out_path.join("bindings.rs"))

.expect("Couldn't write bindings!");
}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 28 / 40



build.rs Handles Linkage For Us!
println!("cargo:rustc-link-lib=bz2");

does dynamic linking, looking for libbz2.so, and

println!("cargo:rustc-link-lib=static=bz2");

does static linking, looking for libbz2.a

See https://doc.rust-lang.org/cargo/reference/build-scripts.html for all options

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 29 / 40

https://doc.rust-lang.org/cargo/reference/build-scripts.html


Including Generated Bindings
This step needs to be done because Cargo only looks at the source tree for files to
compile, and build.rs scripts should not be modifying that directly:

// Contents of src/lib/ffi.rs

#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
include!(concat!(env!("OUT_DIR"), "/bindings.rs"));

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 30 / 40



Example C Header To Parse
typedef struct CoolStruct {

int x;
int y;

} CoolStruct;

void cool_function(int i, char c, CoolStruct* cs);

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 31 / 40



Example bindgen Generated Bindings
#[repr(C)]
pub struct CoolStruct {

pub x: ::std::os::raw::c_int,
pub y: ::std::os::raw::c_int,

}

extern "C" {
pub fn cool_function(i: ::std::os::raw::c_int,

c: ::std::os::raw::c_char,
cs: *mut CoolStruct);

}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 32 / 40



With C++

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 32 / 40



One Option: “C++ is just C”

Make a C interface to your C++ library
Use the same techniques as before to use that interface in Rust
???
Profit?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 33 / 40



One Option: “C++ is just C”
Make a C interface to your C++ library

Use the same techniques as before to use that interface in Rust
???
Profit?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 33 / 40



One Option: “C++ is just C”
Make a C interface to your C++ library
Use the same techniques as before to use that interface in Rust

???
Profit?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 33 / 40



One Option: “C++ is just C”
Make a C interface to your C++ library
Use the same techniques as before to use that interface in Rust
???

Profit?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 33 / 40



One Option: “C++ is just C”
Make a C interface to your C++ library
Use the same techniques as before to use that interface in Rust
???
Profit?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 33 / 40



The Issue: C++ Is Not Just C

Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 34 / 40



The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 34 / 40



The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *

std::vector<int> → int *
We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 34 / 40



The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 34 / 40



The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers

Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 34 / 40



The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 34 / 40



cxx

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 34 / 40



Main Features
Shared Structs/Enums
Opaque Types (on either side)
Functions (on either side)

Not type-generic ones though!

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 35 / 40



Canonical Example
#[cxx::bridge]
mod ffi {

extern "Rust" {
// Rust stuff

}

unsafe extern "C++" {
// C++ stuff

}

}

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 36 / 40



Rust Stuff: All The Stuff You Love!
type MultiBuf;

fn next_chunk(buf: &mut MultiBuf) -> &[u8];

Can also use String, &str, Vec<T>, &[T], Box<T>!
Converted to rust::String, rust::Str, rust::Slice<T>, rust::Box<T>,
rust::Vec<T> in C++ code
These are C++-native types, with the utilities you expect, much easier to work
with than raw pointers

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 37 / 40



C++ Stuff: All The Stuff You Can Tolerate!
std::unique_ptr<T>, std::shared_ptr<T>, std::string, std::vector<T>
Converted to UniquePtr<T>, SharedPtr<T>, CxxString, CxxVector in Rust
code
Result<T> from Rust will be rust::Error in C++ and a C++ function
throwing an exception will be Result<T, cxx:Exception> in Rust

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 38 / 40



C++ Stuff: Code Example
include!("example/include/blobstore.h");

type BlobstoreClient;

fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;

fn put(self: &BlobstoreClient, buf: &mut MultiBuf) -> Result<u64>;

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 39 / 40



Not Quite Complete
There are a couple missing features:

C++ function pointers → Rust

Jack Duvall & Cooper Pierce unsafe Rust 22nd March 2023 40 / 40


	unsafe Features
	Type Sizing
	FFI
	With C
	With C++


