
FFI

Jack Duvall & Cooper Pierce

1 FFI
With C

bindgen
With C++

cxx
With Python
With Javascript

2 unsafe code demo

Jack Duvall & Cooper Pierce FFI 5th April 2023 0 / 30

With C

Jack Duvall & Cooper Pierce FFI 5th April 2023 0 / 30

So You Want To Call C From Rust, Huh?
Conceptually, not too bad, just a few simple steps:

Declare what C functions are available
Link against the C library
Call the function, using unsafe

Jack Duvall & Cooper Pierce FFI 5th April 2023 1 / 30

Review: Calling Conventions
a.k.a. the Application Binary Interface (ABI)

a.k.a. how to talk to other people (’s C code)

How are arguments passed?
What registers are clobbered?
How do you get the return value?

Jack Duvall & Cooper Pierce FFI 5th April 2023 2 / 30

Review: Calling Conventions
a.k.a. the Application Binary Interface (ABI)

a.k.a. how to talk to other people (’s C code)

How are arguments passed?
What registers are clobbered?
How do you get the return value?

Jack Duvall & Cooper Pierce FFI 5th April 2023 2 / 30

Review: Calling Conventions
a.k.a. the Application Binary Interface (ABI)

a.k.a. how to talk to other people (’s C code)

How are arguments passed?
What registers are clobbered?
How do you get the return value?

Jack Duvall & Cooper Pierce FFI 5th April 2023 2 / 30

Rust Supported Calling Conventions (via LLVM)
“Rust”—Rust’s own calling convention
“C”—(default) calling convention used by your C compiler
“system”—calling convention used by your OS, usually same as “C” except on
Win32 where it’s “stdcall”
“cdecl”—x86_32 calling convention
“stdcall”—Win32 x86_32 ABI
“win64”—x86_64 Windows ABI
“sysv64”—x86_64 non-Windows
“aapcs”—ARM
“fastcall”
“vectorcall”

See https://doc.rust-lang.org/reference/items/external-blocks.html for details.

Jack Duvall & Cooper Pierce FFI 5th April 2023 3 / 30

https://doc.rust-lang.org/reference/items/external-blocks.html

External Linkage With extern
// Function we can link against
extern "C" {

fn my_other_c_function(x: i32, y: i32) -> i32;
}

// Function that we export and can be linked to
#[no_mangle]
extern "C" fn my_rust_function(x: i32, y: i32) -> i32 { ... }

Jack Duvall & Cooper Pierce FFI 5th April 2023 4 / 30

Review1: Linkage
How can we link code?

Dynamic Linkage: “hey OS i want this library please load it when u launch me”
Pros: Smaller binary size, flexible to upgrade library
Cons: Code can’t handle upgrades in a significant number of cases

Static Linkage: “hey Compiler i want this library please put it next to my code”
Pros: You always get the library version you want
Cons: Upgrading requires re-compilation

0okay, probably not
Jack Duvall & Cooper Pierce FFI 5th April 2023 5 / 30

Specifying Linkage for extern C Functions
#[link(name = "foo")] // kind = "dylib"
extern {

fn cool_foo() -> *const u8;
}

#[link(name = "bar", kind = "static")]
extern {

fn cool_bar() -> *const u8;
}

Jack Duvall & Cooper Pierce FFI 5th April 2023 6 / 30

Things To Watch Out For
A couple of potential linking pitfalls:

Your compiler can find the library you’re linking against
For dynamic libraries, OS needs to find too!
For very fancy libraries, needs to be built by the same compiler!

Your definitions in Rust exactly match the definitions in C

Jack Duvall & Cooper Pierce FFI 5th April 2023 7 / 30

bindgen

Jack Duvall & Cooper Pierce FFI 5th April 2023 7 / 30

Idea: Computer, Write Rust FFI For Me
Steps:

Tell bindgen to make bindings at compile time
Use include! macro to textually include generated bindings
Link against C library
Call the functions using unsafe

Jack Duvall & Cooper Pierce FFI 5th April 2023 8 / 30

https://rust-lang.github.io/rust-bindgen/

How Do We Do Stuff At Compile Time?
build.rs scripts!

Placed at root of package next to Cargo.toml
Run before Rust code compiled, can do arbitrary configuration since it’s a binary
itself
Special output used to control behavior of Cargo

Jack Duvall & Cooper Pierce FFI 5th April 2023 9 / 30

https://doc.rust-lang.org/cargo/reference/build-scripts.html

Small build.rs Example
fn main() {

// Tell Cargo that if the given file changes, to rerun this
// build script.
println!("cargo:rerun-if-changed=src/hello.c");

// Use the `cc` crate to build a C file and statically link it.
cc::Build::new()

.file("src/hello.c")

.compile("hello");
}

Jack Duvall & Cooper Pierce FFI 5th April 2023 10 / 30

bindgen build.rs Example
fn main() {

println!("cargo:rustc-link-lib=bz2");
println!("cargo:rerun-if-changed=wrapper.h");
let bindings = bindgen::Builder::default()

.header("wrapper.h")

.parse_callbacks(Box::new(bindgen::CargoCallbacks))

.generate()

.expect("Unable to generate bindings");
let out_path = PathBuf::from(env::var("OUT_DIR").unwrap());
bindings

.write_to_file(out_path.join("bindings.rs"))

.expect("Couldn't write bindings!");
}

Jack Duvall & Cooper Pierce FFI 5th April 2023 11 / 30

build.rs Handles Linkage For Us!
println!("cargo:rustc-link-lib=bz2");

does dynamic linking, looking for libbz2.so, and

println!("cargo:rustc-link-lib=static=bz2");

does static linking, looking for libbz2.a

See https://doc.rust-lang.org/cargo/reference/build-scripts.html for all options

Jack Duvall & Cooper Pierce FFI 5th April 2023 12 / 30

https://doc.rust-lang.org/cargo/reference/build-scripts.html

Including Generated Bindings
This step needs to be done because Cargo only looks at the source tree for files to
compile, and build.rs scripts should not be modifying that directly:

// Contents of src/lib/ffi.rs

#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
include!(concat!(env!("OUT_DIR"), "/bindings.rs"));

Jack Duvall & Cooper Pierce FFI 5th April 2023 13 / 30

Example C Header To Parse
typedef struct CoolStruct {

int x;
int y;

} CoolStruct;

void cool_function(int i, char c, CoolStruct* cs);

Jack Duvall & Cooper Pierce FFI 5th April 2023 14 / 30

Example bindgen Generated Bindings
#[repr(C)]
pub struct CoolStruct {

pub x: ::std::os::raw::c_int,
pub y: ::std::os::raw::c_int,

}

extern "C" {
pub fn cool_function(i: ::std::os::raw::c_int,

c: ::std::os::raw::c_char,
cs: *mut CoolStruct);

}

Jack Duvall & Cooper Pierce FFI 5th April 2023 15 / 30

With C++

Jack Duvall & Cooper Pierce FFI 5th April 2023 15 / 30

One Option: “C++ is just C”

Make a C interface to your C++ library
Use the same techniques as before to use that interface in Rust
???
Profit?

Jack Duvall & Cooper Pierce FFI 5th April 2023 16 / 30

One Option: “C++ is just C”
Make a C interface to your C++ library

Use the same techniques as before to use that interface in Rust
???
Profit?

Jack Duvall & Cooper Pierce FFI 5th April 2023 16 / 30

One Option: “C++ is just C”
Make a C interface to your C++ library
Use the same techniques as before to use that interface in Rust

???
Profit?

Jack Duvall & Cooper Pierce FFI 5th April 2023 16 / 30

One Option: “C++ is just C”
Make a C interface to your C++ library
Use the same techniques as before to use that interface in Rust
???

Profit?

Jack Duvall & Cooper Pierce FFI 5th April 2023 16 / 30

One Option: “C++ is just C”
Make a C interface to your C++ library
Use the same techniques as before to use that interface in Rust
???
Profit?

Jack Duvall & Cooper Pierce FFI 5th April 2023 16 / 30

The Issue: C++ Is Not Just C

Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce FFI 5th April 2023 17 / 30

The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce FFI 5th April 2023 17 / 30

The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *

std::vector<int> → int *
We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce FFI 5th April 2023 17 / 30

The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce FFI 5th April 2023 17 / 30

The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers

Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce FFI 5th April 2023 17 / 30

The Issue: C++ Is Not Just C
Lots of common types are painful to convert back to C representations

std::string → char *
std::vector<int> → int *

We lose safety guarantees if we just use pointers
Hey, wait a minute, doesn’t Rust solve those same problems?

Jack Duvall & Cooper Pierce FFI 5th April 2023 17 / 30

cxx

Jack Duvall & Cooper Pierce FFI 5th April 2023 17 / 30

Main Features
Shared Structs/Enums
Opaque Types (on either side)
Functions (on either side)

Not type-generic ones though!

Jack Duvall & Cooper Pierce FFI 5th April 2023 18 / 30

Canonical Example
#[cxx::bridge]
mod ffi {

extern "Rust" {
// Rust stuff

}

unsafe extern "C++" {
// C++ stuff

}

}

Jack Duvall & Cooper Pierce FFI 5th April 2023 19 / 30

Rust Stuff: All The Stuff You Love!
type MultiBuf;

fn next_chunk(buf: &mut MultiBuf) -> &[u8];

Can also use String, &str, Vec<T>, &[T], Box<T>!
Converted to rust::String, rust::Str, rust::Slice<T>, rust::Box<T>,
rust::Vec<T> in C++ code
These are C++-native types, with the utilities you expect, much easier to work
with than raw pointers

Jack Duvall & Cooper Pierce FFI 5th April 2023 20 / 30

C++ Stuff: All The Stuff You Can Tolerate!
std::unique_ptr<T>, std::shared_ptr<T>, std::string, std::vector<T>
Converted to UniquePtr<T>, SharedPtr<T>, CxxString, CxxVector in Rust
code
Result<T> from Rust will be rust::Error in C++ and a C++ function
throwing an exception will be Result<T, cxx:Exception> in Rust

Jack Duvall & Cooper Pierce FFI 5th April 2023 21 / 30

C++ Stuff: Code Example
include!("example/include/blobstore.h");

type BlobstoreClient;

fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;

fn put(self: &BlobstoreClient, buf: &mut MultiBuf) -> Result<u64>;

Jack Duvall & Cooper Pierce FFI 5th April 2023 22 / 30

Not Quite Complete
There are a couple missing features:

C++ function pointers → Rust

... and that’s basically it!

Jack Duvall & Cooper Pierce FFI 5th April 2023 23 / 30

Not Quite Complete
There are a couple missing features:

C++ function pointers → Rust
... and that’s basically it!

Jack Duvall & Cooper Pierce FFI 5th April 2023 23 / 30

With Python

Jack Duvall & Cooper Pierce FFI 5th April 2023 23 / 30

Everyone1loves Python!
C++ has PyBind11, do we have anything like that for Rust?

Of course we do! PyO3

Limited to Python-understandable types, but a lot of conversions

1Well, maybe not everyone...
Jack Duvall & Cooper Pierce FFI 5th April 2023 24 / 30

https://pybind11.readthedocs.io/en/stable/
https://pyo3.rs/

Everyone1loves Python!
C++ has PyBind11, do we have anything like that for Rust?
Of course we do! PyO3

Limited to Python-understandable types, but a lot of conversions

1Well, maybe not everyone...
Jack Duvall & Cooper Pierce FFI 5th April 2023 24 / 30

https://pybind11.readthedocs.io/en/stable/
https://pyo3.rs/

Everyone1loves Python!
C++ has PyBind11, do we have anything like that for Rust?
Of course we do! PyO3

Limited to Python-understandable types, but a lot of conversions

1Well, maybe not everyone...
Jack Duvall & Cooper Pierce FFI 5th April 2023 24 / 30

https://pybind11.readthedocs.io/en/stable/
https://pyo3.rs/

pyo3 FFI: Rust Side
use pyo3::prelude::*;

/// Formats the sum of two numbers as string.
#[pyfunction]
fn sum_as_string(a: usize, b: usize) -> PyResult<String> {

Ok((a + b).to_string())
}

/// A Python module implemented in Rust.
#[pymodule]
fn pyo3_example(_py: Python, m: &PyModule) -> PyResult<()> {

m.add_function(wrap_pyfunction!(sum_as_string, m)?)?;
Ok(())

}

Jack Duvall & Cooper Pierce FFI 5th April 2023 25 / 30

pyo3 FFI: Python Side
import pyo3_example
print(pyo3_example.sum_as_string(123432, 432432)[0])

Jack Duvall & Cooper Pierce FFI 5th April 2023 26 / 30

pyo3: Going The Other Way
use pyo3::prelude::*;
use pyo3::types::IntoPyDict;

fn main() -> PyResult<()> {
Python::with_gil(|py| {

let sys = py.import("sys")?;
let version: String = sys.getattr("version")?.extract()?;
let locals = [("os", py.import("os")?)].into_py_dict(py);
let code = "os.getenv('USER')";
let user: String = py.eval(code, None, Some(&locals))?

.extract()?;
println!("Hello {}, I'm Python {}", user, version);
Ok(())

})
}

Jack Duvall & Cooper Pierce FFI 5th April 2023 27 / 30

With Javascript

Jack Duvall & Cooper Pierce FFI 5th April 2023 27 / 30

What’s Another Compilation Target Among
Friends?
Rust can target WebAssembly!

What is WebAssembly?

A “low-level assembly-like language with a compact binary format that runs with
near-native performance” in the browser (MDN)
Speeds up critical parts of web applications
Also used for cross-platform binaries2

2Better than Java!
Jack Duvall & Cooper Pierce FFI 5th April 2023 28 / 30

https://developer.mozilla.org/en-US/docs/WebAssembly

What’s Another Compilation Target Among
Friends?
Rust can target WebAssembly!
What is WebAssembly?

A “low-level assembly-like language with a compact binary format that runs with
near-native performance” in the browser (MDN)
Speeds up critical parts of web applications
Also used for cross-platform binaries2

2Better than Java!
Jack Duvall & Cooper Pierce FFI 5th April 2023 28 / 30

https://developer.mozilla.org/en-US/docs/WebAssembly

What’s Another Compilation Target Among
Friends?
Rust can target WebAssembly!
What is WebAssembly?

A “low-level assembly-like language with a compact binary format that runs with
near-native performance” in the browser (MDN)

Speeds up critical parts of web applications
Also used for cross-platform binaries2

2Better than Java!
Jack Duvall & Cooper Pierce FFI 5th April 2023 28 / 30

https://developer.mozilla.org/en-US/docs/WebAssembly

What’s Another Compilation Target Among
Friends?
Rust can target WebAssembly!
What is WebAssembly?

A “low-level assembly-like language with a compact binary format that runs with
near-native performance” in the browser (MDN)
Speeds up critical parts of web applications

Also used for cross-platform binaries2

2Better than Java!
Jack Duvall & Cooper Pierce FFI 5th April 2023 28 / 30

https://developer.mozilla.org/en-US/docs/WebAssembly

What’s Another Compilation Target Among
Friends?
Rust can target WebAssembly!
What is WebAssembly?

A “low-level assembly-like language with a compact binary format that runs with
near-native performance” in the browser (MDN)
Speeds up critical parts of web applications
Also used for cross-platform binaries2

2Better than Java!
Jack Duvall & Cooper Pierce FFI 5th April 2023 28 / 30

https://developer.mozilla.org/en-US/docs/WebAssembly

wasm_bindgen FFI: Rust side
#[wasm_bindgen]
extern {

fn alert(s: &str);
}

#[wasm_bindgen]
pub fn greet() {

alert("Hello, wasm-game-of-life!");
}

Use the wasm-pack tool to compile this code into WebAssembly!

Jack Duvall & Cooper Pierce FFI 5th April 2023 29 / 30

https://rustwasm.github.io/wasm-pack/

wasm_bindgen FFI: Rust side
#[wasm_bindgen]
extern {

fn alert(s: &str);
}

#[wasm_bindgen]
pub fn greet() {

alert("Hello, wasm-game-of-life!");
}

Use the wasm-pack tool to compile this code into WebAssembly!

Jack Duvall & Cooper Pierce FFI 5th April 2023 29 / 30

https://rustwasm.github.io/wasm-pack/

wasm_bindgen FFI: Javascript side
import init, { greet } from './pkg/wasm_example.js';

async function run() {
await init();
greet();

}

Not pictured: trying to get this to work with unholier JS build systems

Jack Duvall & Cooper Pierce FFI 5th April 2023 30 / 30

wasm_bindgen FFI: Javascript side
import init, { greet } from './pkg/wasm_example.js';

async function run() {
await init();
greet();

}

Not pictured: trying to get this to work with unholier JS build systems

Jack Duvall & Cooper Pierce FFI 5th April 2023 30 / 30

1 FFI
With C

bindgen
With C++

cxx
With Python
With Javascript

2 unsafe code demo

Jack Duvall & Cooper Pierce FFI 5th April 2023 30 / 30

	FFI
	With C
	With C++
	With Python
	With Javascript

	unsafe code demo

