
Concurrency and Parallelism I
Threads and Synchronisation

Cooper Pierce & Jack Duvall

Outline

1 Threads

2 Concurrency in Rust
Send and Sync
Important Types for Synchronisation

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 1 / 24

Review: What are threads?
Threads allow our program to have multiple instruction streams executing concurrently
(and perhaps, in parallel). Talking about 1:1 threads here:

What are some resources threads
share?

an address space
static variables
signals, to an extent

... and some they don’t?

registers
stack space (can still access
other threads’ stacks!)
_Thread_local variables

Other alternatives to 1:1 threads include M:N threads (“green threads”) and processes.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 2 / 24

Review: What are threads?
Threads allow our program to have multiple instruction streams executing concurrently
(and perhaps, in parallel). Talking about 1:1 threads here:

What are some resources threads
share?

an address space

static variables
signals, to an extent

... and some they don’t?

registers
stack space (can still access
other threads’ stacks!)
_Thread_local variables

Other alternatives to 1:1 threads include M:N threads (“green threads”) and processes.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 2 / 24

Review: What are threads?
Threads allow our program to have multiple instruction streams executing concurrently
(and perhaps, in parallel). Talking about 1:1 threads here:

What are some resources threads
share?

an address space
static variables

signals, to an extent

... and some they don’t?

registers
stack space (can still access
other threads’ stacks!)
_Thread_local variables

Other alternatives to 1:1 threads include M:N threads (“green threads”) and processes.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 2 / 24

Review: What are threads?
Threads allow our program to have multiple instruction streams executing concurrently
(and perhaps, in parallel). Talking about 1:1 threads here:

What are some resources threads
share?

an address space
static variables
signals, to an extent

... and some they don’t?

registers
stack space (can still access
other threads’ stacks!)
_Thread_local variables

Other alternatives to 1:1 threads include M:N threads (“green threads”) and processes.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 2 / 24

Review: What are threads?
Threads allow our program to have multiple instruction streams executing concurrently
(and perhaps, in parallel). Talking about 1:1 threads here:

What are some resources threads
share?

an address space
static variables
signals, to an extent

... and some they don’t?
registers

stack space (can still access
other threads’ stacks!)
_Thread_local variables

Other alternatives to 1:1 threads include M:N threads (“green threads”) and processes.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 2 / 24

Review: What are threads?
Threads allow our program to have multiple instruction streams executing concurrently
(and perhaps, in parallel). Talking about 1:1 threads here:

What are some resources threads
share?

an address space
static variables
signals, to an extent

... and some they don’t?
registers
stack space (can still access
other threads’ stacks!)

_Thread_local variables

Other alternatives to 1:1 threads include M:N threads (“green threads”) and processes.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 2 / 24

Review: What are threads?
Threads allow our program to have multiple instruction streams executing concurrently
(and perhaps, in parallel). Talking about 1:1 threads here:

What are some resources threads
share?

an address space
static variables
signals, to an extent

... and some they don’t?
registers
stack space (can still access
other threads’ stacks!)
_Thread_local variables

Other alternatives to 1:1 threads include M:N threads (“green threads”) and processes.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 2 / 24

Review: What are threads?
Threads allow our program to have multiple instruction streams executing concurrently
(and perhaps, in parallel). Talking about 1:1 threads here:

What are some resources threads
share?

an address space
static variables
signals, to an extent

... and some they don’t?
registers
stack space (can still access
other threads’ stacks!)
_Thread_local variables

Other alternatives to 1:1 threads include M:N threads (“green threads”) and processes.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 2 / 24

Counting in C
int incr(void *x) {

++(*(int *)x);
return 0;

}

int main() {
int x = 0;
thrd_t threads[NUM_THREADS];

for (size_t i = 0; i < NUM_THREADS; ++i) {
if (thrd_create(&threads[i], incr, &x) != thrd_success) {

fprintf(stderr, "Issue creating thread\n");
return 1;

}
}

for (size_t i = 0; i < NUM_THREADS; ++i) {
thrd_join(threads[i], NULL);

}

printf("After incrementing x %zu times, it is now %d\n",
NUM_THREADS, x);

return 0;
}

Any issues?
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 3 / 24

Yes! Lots! Our program doesn’t even work:

[16:54] laptop:lectures | ./a.out
After incrementing x 1000 times, it is now 1000
[16:55] laptop:lectures | ./a.out
After incrementing x 1000 times, it is now 1000
[16:55] laptop:lectures | ./a.out
After incrementing x 1000 times, it is now 1000
[16:55] laptop:lectures | ./a.out
After incrementing x 1000 times, it is now 999
[16:55] laptop:lectures | ./a.out
After incrementing x 1000 times, it is now 999
[16:55] laptop:lectures | ./a.out
After incrementing x 1000 times, it is now 999

and it isn’t even consistently wrong. What happened?

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 4 / 24

Race Conditions
Our program is violating one of the things Rust’s system of only1 allowing mutation
through exclusive borrows (&mut T) is designed to prevent: two different threads
might try and modify the same value at the same time. There’s at least one potential
issue with this:

Thread A

tmp = *x

tmp = tmp + 1

*x = tmp

Thread B

tmp = *x
tmp = tmp + 1
*x = tmp

1mostly
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 5 / 24

Race Conditions
Our program is violating one of the things Rust’s system of only1 allowing mutation
through exclusive borrows (&mut T) is designed to prevent: two different threads
might try and modify the same value at the same time. There’s at least one potential
issue with this:

Thread A

tmp = *x

tmp = tmp + 1

*x = tmp

Thread B

tmp = *x
tmp = tmp + 1
*x = tmp

1mostly
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 5 / 24

Synchronisation
We need a way to communicate between threads, so they can coordinate working
through a critical section: part of the code we want to ensure only one thread is
executing at a time.

Luckily for us, there are generally a lot of ways exposed as part of thread APIs which
let us do this:

semaphores
mutexes
reader-writer locks
condvars
spinlocks (almost guarateed to be the wrong choice unless you’re a kernel)
various asm instructions used to implement any of the above

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 6 / 24

Synchronisation
We need a way to communicate between threads, so they can coordinate working
through a critical section: part of the code we want to ensure only one thread is
executing at a time.

Luckily for us, there are generally a lot of ways exposed as part of thread APIs which
let us do this:

semaphores

mutexes
reader-writer locks
condvars
spinlocks (almost guarateed to be the wrong choice unless you’re a kernel)
various asm instructions used to implement any of the above

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 6 / 24

Synchronisation
We need a way to communicate between threads, so they can coordinate working
through a critical section: part of the code we want to ensure only one thread is
executing at a time.

Luckily for us, there are generally a lot of ways exposed as part of thread APIs which
let us do this:

semaphores
mutexes

reader-writer locks
condvars
spinlocks (almost guarateed to be the wrong choice unless you’re a kernel)
various asm instructions used to implement any of the above

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 6 / 24

Synchronisation
We need a way to communicate between threads, so they can coordinate working
through a critical section: part of the code we want to ensure only one thread is
executing at a time.

Luckily for us, there are generally a lot of ways exposed as part of thread APIs which
let us do this:

semaphores
mutexes
reader-writer locks

condvars
spinlocks (almost guarateed to be the wrong choice unless you’re a kernel)
various asm instructions used to implement any of the above

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 6 / 24

Synchronisation
We need a way to communicate between threads, so they can coordinate working
through a critical section: part of the code we want to ensure only one thread is
executing at a time.

Luckily for us, there are generally a lot of ways exposed as part of thread APIs which
let us do this:

semaphores
mutexes
reader-writer locks
condvars

spinlocks (almost guarateed to be the wrong choice unless you’re a kernel)
various asm instructions used to implement any of the above

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 6 / 24

Synchronisation
We need a way to communicate between threads, so they can coordinate working
through a critical section: part of the code we want to ensure only one thread is
executing at a time.

Luckily for us, there are generally a lot of ways exposed as part of thread APIs which
let us do this:

semaphores
mutexes
reader-writer locks
condvars
spinlocks (almost guarateed to be the wrong choice unless you’re a kernel)

various asm instructions used to implement any of the above

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 6 / 24

Synchronisation
We need a way to communicate between threads, so they can coordinate working
through a critical section: part of the code we want to ensure only one thread is
executing at a time.

Luckily for us, there are generally a lot of ways exposed as part of thread APIs which
let us do this:

semaphores
mutexes
reader-writer locks
condvars
spinlocks (almost guarateed to be the wrong choice unless you’re a kernel)
various asm instructions used to implement any of the above

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 6 / 24

Counting in C: Electric Boogaloo

int main() {
int x = 0;
mtx_init(&mutex, mtx_plain);
thrd_t threads[NUM_THREADS];

for (size_t i = 0; i < NUM_THREADS; ++i) {
if (thrd_create(&threads[i], incr, &x) != thrd_success) {

fprintf(stderr, "Issue creating thread\n");
return 1;

}
}

for (size_t i = 0; i < NUM_THREADS; ++i) {
thrd_join(threads[i], NULL);

}
mtx_destroy(&mutex);

printf("After incrementing x %zu times, it is now %d\n", NUM_THREADS,
x);

return 0;
}

static mtx_t mutex;

int incr(void *x) {
mtx_lock(&mutex);
++(*(int *)x);
return 0;

}

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 7 / 24

Counting in C: This Time For Real

int main() {
int x = 0;
mtx_init(&mutex, mtx_plain);
thrd_t threads[NUM_THREADS];

for (size_t i = 0; i < NUM_THREADS; ++i) {
if (thrd_create(&threads[i], incr, &x) != thrd_success) {

fprintf(stderr, "Issue creating thread\n");
return 1;

}
}

for (size_t i = 0; i < NUM_THREADS; ++i) {
thrd_join(threads[i], NULL);

}
mtx_destroy(&mutex);

printf("After incrementing x %zu times, it is now %d\n", NUM_THREADS,
x);

return 0;
}

static mtx_t mutex;

int incr(void *x) {
mtx_lock(&mutex);
++(*(int *)x);
mtx_unlock(&mutex);
return 0;

}

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 8 / 24

Other Issues?
Now that we’ve finalised on this version, are there any other issues we have to
consider? How confident are we in the correctness of this?

One tool we might use (had I written this with pthreads, instead of C11 threads) is
ThreadSanitizer which is a pretty good dynamic checker. Note that this can’t catch
everything, and it’ll only be as good as your test cases!

For instance, we probably missed that if the thread running main terminates early,
we’re accessing a invalid stack value!

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 9 / 24

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Other Issues?
Now that we’ve finalised on this version, are there any other issues we have to
consider? How confident are we in the correctness of this?

One tool we might use (had I written this with pthreads, instead of C11 threads) is
ThreadSanitizer which is a pretty good dynamic checker. Note that this can’t catch
everything, and it’ll only be as good as your test cases!

For instance, we probably missed that if the thread running main terminates early,
we’re accessing a invalid stack value!

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 9 / 24

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Other Issues?
Now that we’ve finalised on this version, are there any other issues we have to
consider? How confident are we in the correctness of this?

One tool we might use (had I written this with pthreads, instead of C11 threads) is
ThreadSanitizer which is a pretty good dynamic checker. Note that this can’t catch
everything, and it’ll only be as good as your test cases!

For instance, we probably missed that if the thread running main terminates early,
we’re accessing a invalid stack value!

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 9 / 24

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Outline

1 Threads

2 Concurrency in Rust
Send and Sync
Important Types for Synchronisation

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 10 / 24

Toward a Better API
Let’s begin by taking a look at the type of thrd_create (pthread_create is a little
different, but for our purpose, close enough to just consider one of them):

int thrd_create(thrd_t *thr, int (*func)(void *), void *arg)

How could we refactor this into something better, if we had more tools in our type
system?

Some possibilities:

result<thr, thrd_error> thrd_create(int (*func)(void *), void *arg)

result<thr, thrd_error> thrd_create<T>(int (*func)(T), T arg)

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 11 / 24

Toward a Better API
Let’s begin by taking a look at the type of thrd_create (pthread_create is a little
different, but for our purpose, close enough to just consider one of them):

int thrd_create(thrd_t *thr, int (*func)(void *), void *arg)

How could we refactor this into something better, if we had more tools in our type
system?
Some possibilities:

result<thr, thrd_error> thrd_create(int (*func)(void *), void *arg)

result<thr, thrd_error> thrd_create<T>(int (*func)(T), T arg)

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 11 / 24

Toward a Better API
Let’s begin by taking a look at the type of thrd_create (pthread_create is a little
different, but for our purpose, close enough to just consider one of them):

int thrd_create(thrd_t *thr, int (*func)(void *), void *arg)

How could we refactor this into something better, if we had more tools in our type
system?
Some possibilities:

result<thr, thrd_error> thrd_create(int (*func)(void *), void *arg)

result<thr, thrd_error> thrd_create<T>(int (*func)(T), T arg)

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 11 / 24

Toward a Better API
Let’s begin by taking a look at the type of thrd_create (pthread_create is a little
different, but for our purpose, close enough to just consider one of them):

int thrd_create(thrd_t *thr, int (*func)(void *), void *arg)

How could we refactor this into something better, if we had more tools in our type
system?
Some possibilities:

result<thr, thrd_error> thrd_create(int (*func)(void *), void *arg)

result<thr, thrd_error> thrd_create<T>(int (*func)(T), T arg)

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 11 / 24

Toward a Better API: the Function Itself
That last one seems like a pretty nice improvement, but is there anything else we
might want to iterate on?

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

We’re still letting this just take any old function in! Supposing we had the ability to do
so, what are some constraints we might want here?

probably don’t want to let it take things by value if the type references a location
which might be reachable through another pointer (e.g., a pointer, a reference
counted pointer)
probably don’t want to let it take a reference to a type if we could cause a write
to occur using the reference (e.g., a reference to something fulfilling the first
bullet point)
any reference we pass has to last at least as long as the new thread will
(potentially, for the life of the program)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 12 / 24

Toward a Better API: the Function Itself
That last one seems like a pretty nice improvement, but is there anything else we
might want to iterate on?

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

We’re still letting this just take any old function in! Supposing we had the ability to do
so, what are some constraints we might want here?

probably don’t want to let it take things by value if the type references a location
which might be reachable through another pointer (e.g., a pointer, a reference
counted pointer)
probably don’t want to let it take a reference to a type if we could cause a write
to occur using the reference (e.g., a reference to something fulfilling the first
bullet point)
any reference we pass has to last at least as long as the new thread will
(potentially, for the life of the program)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 12 / 24

Toward a Better API: the Function Itself
That last one seems like a pretty nice improvement, but is there anything else we
might want to iterate on?

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

We’re still letting this just take any old function in! Supposing we had the ability to do
so, what are some constraints we might want here?

probably don’t want to let it take things by value if the type references a location
which might be reachable through another pointer (e.g., a pointer, a reference
counted pointer)

probably don’t want to let it take a reference to a type if we could cause a write
to occur using the reference (e.g., a reference to something fulfilling the first
bullet point)
any reference we pass has to last at least as long as the new thread will
(potentially, for the life of the program)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 12 / 24

Toward a Better API: the Function Itself
That last one seems like a pretty nice improvement, but is there anything else we
might want to iterate on?

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

We’re still letting this just take any old function in! Supposing we had the ability to do
so, what are some constraints we might want here?

probably don’t want to let it take things by value if the type references a location
which might be reachable through another pointer (e.g., a pointer, a reference
counted pointer)
probably don’t want to let it take a reference to a type if we could cause a write
to occur using the reference (e.g., a reference to something fulfilling the first
bullet point)

any reference we pass has to last at least as long as the new thread will
(potentially, for the life of the program)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 12 / 24

Toward a Better API: the Function Itself
That last one seems like a pretty nice improvement, but is there anything else we
might want to iterate on?

result<handle<U>, thrd_error> thrd_create<T, U>(U (*func)(T), T arg)

We’re still letting this just take any old function in! Supposing we had the ability to do
so, what are some constraints we might want here?

probably don’t want to let it take things by value if the type references a location
which might be reachable through another pointer (e.g., a pointer, a reference
counted pointer)
probably don’t want to let it take a reference to a type if we could cause a write
to occur using the reference (e.g., a reference to something fulfilling the first
bullet point)
any reference we pass has to last at least as long as the new thread will
(potentially, for the life of the program)

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 12 / 24

Rust: std::thread::spawn
Here’s what Rust gives us:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T,
F: Send + 'static,
T: Send + 'static,

So we’ve got some old favourites, and some new things to talk about:

Closure traits return, so we get a little bit more flexibility than function pointers
There’s a new marker trait, Send—we’ll talk about this in a second
We also have a lifetime bound on our types: this means that any references the
bounded type contains needs to live for at least as long as the bounding
lifetime—in the case of 'static, for the life of the program.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 13 / 24

Rust: std::thread::spawn
Here’s what Rust gives us:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T,
F: Send + 'static,
T: Send + 'static,

So we’ve got some old favourites, and some new things to talk about:

Closure traits return, so we get a little bit more flexibility than function pointers
There’s a new marker trait, Send—we’ll talk about this in a second
We also have a lifetime bound on our types: this means that any references the
bounded type contains needs to live for at least as long as the bounding
lifetime—in the case of 'static, for the life of the program.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 13 / 24

Rust: std::thread::spawn
Here’s what Rust gives us:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T,
F: Send + 'static,
T: Send + 'static,

So we’ve got some old favourites, and some new things to talk about:
Closure traits return, so we get a little bit more flexibility than function pointers

There’s a new marker trait, Send—we’ll talk about this in a second
We also have a lifetime bound on our types: this means that any references the
bounded type contains needs to live for at least as long as the bounding
lifetime—in the case of 'static, for the life of the program.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 13 / 24

Rust: std::thread::spawn
Here’s what Rust gives us:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T,
F: Send + 'static,
T: Send + 'static,

So we’ve got some old favourites, and some new things to talk about:
Closure traits return, so we get a little bit more flexibility than function pointers
There’s a new marker trait, Send—we’ll talk about this in a second

We also have a lifetime bound on our types: this means that any references the
bounded type contains needs to live for at least as long as the bounding
lifetime—in the case of 'static, for the life of the program.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 13 / 24

Rust: std::thread::spawn
Here’s what Rust gives us:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T,
F: Send + 'static,
T: Send + 'static,

So we’ve got some old favourites, and some new things to talk about:
Closure traits return, so we get a little bit more flexibility than function pointers
There’s a new marker trait, Send—we’ll talk about this in a second
We also have a lifetime bound on our types: this means that any references the
bounded type contains needs to live for at least as long as the bounding
lifetime—in the case of 'static, for the life of the program.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 13 / 24

Scoped threads: std::thread::scope
What about the case where we know we join a thread before some value it’s borrowing
is dropped? Does our current API support this well?

let mut x = 0;
let t = std::thread::spawn(|| x += 1);
t.join();
println!("{x}");

No! This won’t compile: playground.
What would we need to know for this to be safe? How could we prove that threads
were joined by a certain point?

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 14 / 24

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=49d73bf00bd5578a8b44db096b5581b8

Scoped threads: std::thread::scope
What about the case where we know we join a thread before some value it’s borrowing
is dropped? Does our current API support this well?

let mut x = 0;
let t = std::thread::spawn(|| x += 1);
t.join();
println!("{x}");

No! This won’t compile: playground.

What would we need to know for this to be safe? How could we prove that threads
were joined by a certain point?

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 14 / 24

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=49d73bf00bd5578a8b44db096b5581b8

Scoped threads: std::thread::scope
What about the case where we know we join a thread before some value it’s borrowing
is dropped? Does our current API support this well?

let mut x = 0;
let t = std::thread::spawn(|| x += 1);
t.join();
println!("{x}");

No! This won’t compile: playground.
What would we need to know for this to be safe? How could we prove that threads
were joined by a certain point?

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 14 / 24

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=49d73bf00bd5578a8b44db096b5581b8

Scoped threads: std::thread::scope
pub struct Scope<'scope, 'env: 'scope> { /* private fields */ }

pub fn scope<'env, F, T>(f: F) -> T
where

F: for<'scope> FnOnce(&'scope Scope<'scope, 'env>) -> T,

impl<'scope, 'env> Scope<'scope, 'env> {
pub fn spawn<F, T>(&'scope self, f: F)

-> ScopedJoinHandle<'scope, T>
where

F: FnOnce() -> T + Send + 'scope,
T: Send + 'scope,

}

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 15 / 24

Scoped threads: std::thread::scope
So we have a Scope which can use to spawn threads, and this scope has a lifetime
'scope, which is the most threads spawned from it can live. In turn, the threads
might borrow data for 'env, the lifetime of the values in the captured environment,
which is at least as long as 'scope.

So now, revisiting our example from before, we could write:

let mut x = 0;
std::thread::scope(|s| {

s.spawn(|| x += 1);
});
println!("{x}");

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 16 / 24

Scoped threads: std::thread::scope
So we have a Scope which can use to spawn threads, and this scope has a lifetime
'scope, which is the most threads spawned from it can live. In turn, the threads
might borrow data for 'env, the lifetime of the values in the captured environment,
which is at least as long as 'scope.

So now, revisiting our example from before, we could write:

let mut x = 0;
std::thread::scope(|s| {

s.spawn(|| x += 1);
});
println!("{x}");

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 16 / 24

Sync
Sync is a trait implemented by types if it is safe to share a borrow (i.e., &T) across
threads. This is most things:

u8, i32, etc..
bool,
Vec<T>, [T] (when T is Sync)

So what is it not?

Rc<T>—a non-atomic reference counted pointer to T. If we had a &Rc<T>, we
could clone the pointer and then modify T!
Other runtime checked types which allow mutation via shared borrows like
Cell<T> (because they don’t synchronise!)

Keep in mind it would still be bad to share an exclusive borrow (&mut T) across
threads! There’s just no way for us to even construct overlapping exclusive borrows to
begin with2.

2in safe Rust; with unsafe, it’s UB
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 17 / 24

https://doc.rust-lang.org/std/marker/trait.Sync.html

Sync
Sync is a trait implemented by types if it is safe to share a borrow (i.e., &T) across
threads. This is most things:

u8, i32, etc..

bool,
Vec<T>, [T] (when T is Sync)

So what is it not?

Rc<T>—a non-atomic reference counted pointer to T. If we had a &Rc<T>, we
could clone the pointer and then modify T!
Other runtime checked types which allow mutation via shared borrows like
Cell<T> (because they don’t synchronise!)

Keep in mind it would still be bad to share an exclusive borrow (&mut T) across
threads! There’s just no way for us to even construct overlapping exclusive borrows to
begin with2.

2in safe Rust; with unsafe, it’s UB
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 17 / 24

https://doc.rust-lang.org/std/marker/trait.Sync.html

Sync
Sync is a trait implemented by types if it is safe to share a borrow (i.e., &T) across
threads. This is most things:

u8, i32, etc..
bool,

Vec<T>, [T] (when T is Sync)
So what is it not?

Rc<T>—a non-atomic reference counted pointer to T. If we had a &Rc<T>, we
could clone the pointer and then modify T!
Other runtime checked types which allow mutation via shared borrows like
Cell<T> (because they don’t synchronise!)

Keep in mind it would still be bad to share an exclusive borrow (&mut T) across
threads! There’s just no way for us to even construct overlapping exclusive borrows to
begin with2.

2in safe Rust; with unsafe, it’s UB
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 17 / 24

https://doc.rust-lang.org/std/marker/trait.Sync.html

Sync
Sync is a trait implemented by types if it is safe to share a borrow (i.e., &T) across
threads. This is most things:

u8, i32, etc..
bool,
Vec<T>, [T] (when T is Sync)

So what is it not?

Rc<T>—a non-atomic reference counted pointer to T. If we had a &Rc<T>, we
could clone the pointer and then modify T!
Other runtime checked types which allow mutation via shared borrows like
Cell<T> (because they don’t synchronise!)

Keep in mind it would still be bad to share an exclusive borrow (&mut T) across
threads! There’s just no way for us to even construct overlapping exclusive borrows to
begin with2.

2in safe Rust; with unsafe, it’s UB
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 17 / 24

https://doc.rust-lang.org/std/marker/trait.Sync.html

Sync
Sync is a trait implemented by types if it is safe to share a borrow (i.e., &T) across
threads. This is most things:

u8, i32, etc..
bool,
Vec<T>, [T] (when T is Sync)

So what is it not?

Rc<T>—a non-atomic reference counted pointer to T. If we had a &Rc<T>, we
could clone the pointer and then modify T!
Other runtime checked types which allow mutation via shared borrows like
Cell<T> (because they don’t synchronise!)

Keep in mind it would still be bad to share an exclusive borrow (&mut T) across
threads! There’s just no way for us to even construct overlapping exclusive borrows to
begin with2.

2in safe Rust; with unsafe, it’s UB
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 17 / 24

https://doc.rust-lang.org/std/marker/trait.Sync.html

Sync
Sync is a trait implemented by types if it is safe to share a borrow (i.e., &T) across
threads. This is most things:

u8, i32, etc..
bool,
Vec<T>, [T] (when T is Sync)

So what is it not?
Rc<T>—a non-atomic reference counted pointer to T. If we had a &Rc<T>, we
could clone the pointer and then modify T!

Other runtime checked types which allow mutation via shared borrows like
Cell<T> (because they don’t synchronise!)

Keep in mind it would still be bad to share an exclusive borrow (&mut T) across
threads! There’s just no way for us to even construct overlapping exclusive borrows to
begin with2.

2in safe Rust; with unsafe, it’s UB
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 17 / 24

https://doc.rust-lang.org/std/marker/trait.Sync.html

Sync
Sync is a trait implemented by types if it is safe to share a borrow (i.e., &T) across
threads. This is most things:

u8, i32, etc..
bool,
Vec<T>, [T] (when T is Sync)

So what is it not?
Rc<T>—a non-atomic reference counted pointer to T. If we had a &Rc<T>, we
could clone the pointer and then modify T!
Other runtime checked types which allow mutation via shared borrows like
Cell<T> (because they don’t synchronise!)

Keep in mind it would still be bad to share an exclusive borrow (&mut T) across
threads! There’s just no way for us to even construct overlapping exclusive borrows to
begin with2.

2in safe Rust; with unsafe, it’s UB
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 17 / 24

https://doc.rust-lang.org/std/marker/trait.Sync.html

Sync
Sync is a trait implemented by types if it is safe to share a borrow (i.e., &T) across
threads. This is most things:

u8, i32, etc..
bool,
Vec<T>, [T] (when T is Sync)

So what is it not?
Rc<T>—a non-atomic reference counted pointer to T. If we had a &Rc<T>, we
could clone the pointer and then modify T!
Other runtime checked types which allow mutation via shared borrows like
Cell<T> (because they don’t synchronise!)

Keep in mind it would still be bad to share an exclusive borrow (&mut T) across
threads! There’s just no way for us to even construct overlapping exclusive borrows to
begin with2.

2in safe Rust; with unsafe, it’s UB
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 17 / 24

https://doc.rust-lang.org/std/marker/trait.Sync.html

Send
Send is a trait implemented by types if it is safe to move its value (i.e., T) across
threads. Again, this is most things.

In fact, if a type T is Sync, then &T is Send (and vice-versa).

Essentially, this is the class of things we can transfer across thread boundaries because
they either: (1) don’t allow for mutable access to the same location as reachable from
elsewhere or (2) ensure such access is protected from occuring in two different
execution contexts (think threads) at the same time.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 18 / 24

https://doc.rust-lang.org/std/marker/trait.Send.html

Mutex<T>
The most commonly used method of synchronisation is probably a mutex. One of the
biggest difference between Rust and other languages is that Mutex<T> is a
container—the data protected by the mutex is inexorably tied to it as part of the type.
Let’s take a look at the API (some minor simplifications for the slides):

pub struct Mutex<T> { /* fields omitted */ }

impl<T> Mutex<T> {
pub fn new(t: T) -> Mutex<T>

pub fn lock(&self) -> LockResult<MutexGuard<'_, T>>
pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>>
pub fn get_mut(&mut self) -> LockResult<&mut T>

}

Anything missing?
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 19 / 24

https://doc.rust-lang.org/std/sync/struct.Mutex.html

Arc<T>
Frequently Mutex<T> will be contained in Arc, an atomically incrementing reference
counted pointer.
Why might this be?

If we want to store a mutex on the stack, lifetimes can become an
issue: how do we know how long the mutex lives? If we allocate space for this, and
know when we’re free to get rid of it via reference counting, we can avoid this.
(alternatives include statics, or just leaking memory)

pub struct Arc<T> { /* fields omitted */ }

impl<T> Arc<T> {
pub fn new(data: T) -> Arc<T>
pub fn get_mut(this: &mut Arc<T>) -> Option<&mut T>
pub fn pin(data: T) -> Pin<Arc<T>> // For next week!

}

importantly this also implements Clone and Deref<Target = T>.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 20 / 24

https://doc.rust-lang.org/std/sync/struct.Arc.html

Arc<T>
Frequently Mutex<T> will be contained in Arc, an atomically incrementing reference
counted pointer.
Why might this be? If we want to store a mutex on the stack, lifetimes can become an
issue: how do we know how long the mutex lives?

If we allocate space for this, and
know when we’re free to get rid of it via reference counting, we can avoid this.
(alternatives include statics, or just leaking memory)

pub struct Arc<T> { /* fields omitted */ }

impl<T> Arc<T> {
pub fn new(data: T) -> Arc<T>
pub fn get_mut(this: &mut Arc<T>) -> Option<&mut T>
pub fn pin(data: T) -> Pin<Arc<T>> // For next week!

}

importantly this also implements Clone and Deref<Target = T>.

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 20 / 24

https://doc.rust-lang.org/std/sync/struct.Arc.html

Arc<T>
Frequently Mutex<T> will be contained in Arc, an atomically incrementing reference
counted pointer.
Why might this be? If we want to store a mutex on the stack, lifetimes can become an
issue: how do we know how long the mutex lives? If we allocate space for this, and
know when we’re free to get rid of it via reference counting, we can avoid this.
(alternatives include statics, or just leaking memory)

pub struct Arc<T> { /* fields omitted */ }

impl<T> Arc<T> {
pub fn new(data: T) -> Arc<T>
pub fn get_mut(this: &mut Arc<T>) -> Option<&mut T>
pub fn pin(data: T) -> Pin<Arc<T>> // For next week!

}

importantly this also implements Clone and Deref<Target = T>.
Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 20 / 24

https://doc.rust-lang.org/std/sync/struct.Arc.html

The std::sync module
Alongside these, the rest of the std::sync module has some important types and
modules for writing concurrent code:

RwLock<T>—platform-agnostic reader-writer locks
Condvar—platform-agnostic condition variables
Barrier—implements memory barriers, a way for multiple threads to wait at a
certain point until all relevant threads reach that point
Once—provides thread-safe one-time initialisation for globals/static variables
mpsc—a module with Multi-producer, single-consumer queues for message
passing between threads.
atomic

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 21 / 24

https://doc.rust-lang.org/std/sync/index.html

The std::sync module
Alongside these, the rest of the std::sync module has some important types and
modules for writing concurrent code:

RwLock<T>—platform-agnostic reader-writer locks

Condvar—platform-agnostic condition variables
Barrier—implements memory barriers, a way for multiple threads to wait at a
certain point until all relevant threads reach that point
Once—provides thread-safe one-time initialisation for globals/static variables
mpsc—a module with Multi-producer, single-consumer queues for message
passing between threads.
atomic

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 21 / 24

https://doc.rust-lang.org/std/sync/index.html

The std::sync module
Alongside these, the rest of the std::sync module has some important types and
modules for writing concurrent code:

RwLock<T>—platform-agnostic reader-writer locks
Condvar—platform-agnostic condition variables

Barrier—implements memory barriers, a way for multiple threads to wait at a
certain point until all relevant threads reach that point
Once—provides thread-safe one-time initialisation for globals/static variables
mpsc—a module with Multi-producer, single-consumer queues for message
passing between threads.
atomic

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 21 / 24

https://doc.rust-lang.org/std/sync/index.html

The std::sync module
Alongside these, the rest of the std::sync module has some important types and
modules for writing concurrent code:

RwLock<T>—platform-agnostic reader-writer locks
Condvar—platform-agnostic condition variables
Barrier—implements memory barriers, a way for multiple threads to wait at a
certain point until all relevant threads reach that point

Once—provides thread-safe one-time initialisation for globals/static variables
mpsc—a module with Multi-producer, single-consumer queues for message
passing between threads.
atomic

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 21 / 24

https://doc.rust-lang.org/std/sync/index.html

The std::sync module
Alongside these, the rest of the std::sync module has some important types and
modules for writing concurrent code:

RwLock<T>—platform-agnostic reader-writer locks
Condvar—platform-agnostic condition variables
Barrier—implements memory barriers, a way for multiple threads to wait at a
certain point until all relevant threads reach that point
Once—provides thread-safe one-time initialisation for globals/static variables

mpsc—a module with Multi-producer, single-consumer queues for message
passing between threads.
atomic

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 21 / 24

https://doc.rust-lang.org/std/sync/index.html

The std::sync module
Alongside these, the rest of the std::sync module has some important types and
modules for writing concurrent code:

RwLock<T>—platform-agnostic reader-writer locks
Condvar—platform-agnostic condition variables
Barrier—implements memory barriers, a way for multiple threads to wait at a
certain point until all relevant threads reach that point
Once—provides thread-safe one-time initialisation for globals/static variables
mpsc—a module with Multi-producer, single-consumer queues for message
passing between threads.

atomic

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 21 / 24

https://doc.rust-lang.org/std/sync/index.html

The std::sync module
Alongside these, the rest of the std::sync module has some important types and
modules for writing concurrent code:

RwLock<T>—platform-agnostic reader-writer locks
Condvar—platform-agnostic condition variables
Barrier—implements memory barriers, a way for multiple threads to wait at a
certain point until all relevant threads reach that point
Once—provides thread-safe one-time initialisation for globals/static variables
mpsc—a module with Multi-producer, single-consumer queues for message
passing between threads.
atomic

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 21 / 24

https://doc.rust-lang.org/std/sync/index.html

Counting in Rust
use std::thread;

const NUM_THREADS: usize = 1000;

fn main() {
let mut x: i32 = 0;
let mut threads = Vec::with_capacity(NUM_THREADS);

for _ in 0..NUM_THREADS {
threads.push(thread::spawn(|| {

x += 1;
}));

}

for thread in threads {
if let Err(e) = thread.join() {

std::panic::resume_unwind(e);
}

}

println!("After incrementing x {NUM_THREADS} times, it is now {x}");
}

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 22 / 24

Counting in Rust
use std::{sync::Mutex, thread};

const NUM_THREADS: usize = 1000;

fn main() {
let x = Mutex::new(0);
let mut threads = Vec::with_capacity(NUM_THREADS);

for _ in 0..NUM_THREADS {
threads.push(thread::spawn(|| match x.lock() {

Ok(mut x) => *x += 1,
Err(_) => unreachable!("This function cannot panic, so the mutex cannot be poisoned"),

}));
}

for thread in threads {
if let Err(e) = thread.join() {

std::panic::resume_unwind(e);
}

}

let x = x.lock().expect("Can't be poisoned");
println!("After incrementing x {NUM_THREADS} times, it is now {x}");

}

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 23 / 24

Counting in Rust
use std::{

sync::{Arc, Mutex},
thread,

};

const NUM_THREADS: usize = 1000;

fn main() {
let x = Arc::new(Mutex::new(0));
let mut threads = Vec::with_capacity(NUM_THREADS);

for _ in 0..NUM_THREADS {
let x = x.clone();
threads.push(thread::spawn(move || match x.lock() {

Ok(mut x) => *x += 1,
Err(_) => unreachable!("This function cannot panic, so the mutex cannot be poisoned"),

}));
}

for thread in threads {
if let Err(e) = thread.join() {

std::panic::resume_unwind(e);
}

}

let x = x.lock().expect("Can't be poisoned");
println!("After incrementing x {NUM_THREADS} times, it is now {x}");

}

Cooper Pierce & Jack Duvall Concurrency and Parallelism I 5th April 2023 24 / 24

	Threads
	Concurrency in Rust
	Send and Sync
	Important Types for Synchronisation

