
Concurrency & Parallelism 2

Jack Duvall

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Async Reactors

5 Backup
Async Traits
Generic Over Async?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 1 / 38

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Async Reactors

5 Backup
Async Traits
Generic Over Async?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 2 / 38

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 12th April 2023 3 / 38

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel

Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 12th April 2023 3 / 38

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 12th April 2023 3 / 38

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads

Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 12th April 2023 3 / 38

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)

Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 12th April 2023 3 / 38

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based

Coroutines

Jack Duvall Concurrency & Parallelism 2 12th April 2023 3 / 38

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 12th April 2023 3 / 38

https://rust-lang.github.io/async-book/

Drawbacks Of Threads

Managed by the OS, therefore expensive
Significantly change code structure

Build around race conditions
Explicitly join threads/subprocesses

Jack Duvall Concurrency & Parallelism 2 12th April 2023 4 / 38

Drawbacks Of Threads
Managed by the OS, therefore expensive

Significantly change code structure

Build around race conditions
Explicitly join threads/subprocesses

Jack Duvall Concurrency & Parallelism 2 12th April 2023 4 / 38

Drawbacks Of Threads
Managed by the OS, therefore expensive
Significantly change code structure

Build around race conditions
Explicitly join threads/subprocesses

Jack Duvall Concurrency & Parallelism 2 12th April 2023 4 / 38

Drawbacks Of Threads
Managed by the OS, therefore expensive
Significantly change code structure

Build around race conditions

Explicitly join threads/subprocesses

Jack Duvall Concurrency & Parallelism 2 12th April 2023 4 / 38

Drawbacks Of Threads
Managed by the OS, therefore expensive
Significantly change code structure

Build around race conditions
Explicitly join threads/subprocesses

Jack Duvall Concurrency & Parallelism 2 12th April 2023 4 / 38

Drawbacks of Callbacks
fetch("https://example.com/thingy").then(function (r) {

// do something with r.status and r.data
});

Can be verbose, especially when nesting
Loops/other control flow is tricky or done outside the core language

Jack Duvall Concurrency & Parallelism 2 12th April 2023 5 / 38

Drawbacks of Callbacks
fetch("https://example.com/thingy").then(function (r) {

// do something with r.status and r.data
});

Can be verbose, especially when nesting

Loops/other control flow is tricky or done outside the core language

Jack Duvall Concurrency & Parallelism 2 12th April 2023 5 / 38

Drawbacks of Callbacks
fetch("https://example.com/thingy").then(function (r) {

// do something with r.status and r.data
});

Can be verbose, especially when nesting
Loops/other control flow is tricky or done outside the core language

Jack Duvall Concurrency & Parallelism 2 12th April 2023 5 / 38

Why Use Async?

Built into the language
“Zero-cost”
Flexible choice of runtime

Jack Duvall Concurrency & Parallelism 2 12th April 2023 6 / 38

Why Use Async?
Built into the language

“Zero-cost”
Flexible choice of runtime

Jack Duvall Concurrency & Parallelism 2 12th April 2023 6 / 38

Why Use Async?
Built into the language
“Zero-cost”

Flexible choice of runtime

Jack Duvall Concurrency & Parallelism 2 12th April 2023 6 / 38

Why Use Async?
Built into the language
“Zero-cost”
Flexible choice of runtime

Jack Duvall Concurrency & Parallelism 2 12th April 2023 6 / 38

Async Example: Network
async fn heartbeat(client: ClientConn) -> Result<(), ConnError> {

loop {
client.send("ping").await?;
if client.recv().await? != "pong" { break; }

}
Ok(())

}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 7 / 38

Async Example: Concurrency
Playground Link:

#[async_recursion::async_recursion]
async fn reduce_max<T: Ord + Sync>(arr: &[T], lo: usize, hi: usize)
-> &T {

if lo == hi { return &arr[lo]; }
let mi = lo + (hi - lo) / 2;
let fut_lo = reduce_max(arr, lo, mi);
let fut_hi = reduce_max(arr, mi+1, hi);
let (res_lo, res_hi) = futures::join!(fut_lo, fut_hi);
match res_lo.cmp(res_hi) {

std::cmp::Ordering::Less => res_hi,
_ => res_lo,

}
}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 8 / 38

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=2c61193c866020ce971a804fafd877a5

Async Example: Concurrent Network
let listener = TcpListener::bind("127.0.0.1:6379").await.unwrap();
loop {

let (socket, _) = listener.accept().await.unwrap();
tokio::spawn(async move {

process(socket).await;
});

}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 9 / 38

Drawbacks of Async

Async is cooperative

CPU-heavy work may block other coroutines
Not yielding via await will block other coroutines

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 10 / 38

Drawbacks of Async
Async is cooperative

CPU-heavy work may block other coroutines
Not yielding via await will block other coroutines

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 10 / 38

Drawbacks of Async
Async is cooperative

CPU-heavy work may block other coroutines

Not yielding via await will block other coroutines
Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 10 / 38

Drawbacks of Async
Async is cooperative

CPU-heavy work may block other coroutines
Not yielding via await will block other coroutines

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 10 / 38

Drawbacks of Async
Async is cooperative

CPU-heavy work may block other coroutines
Not yielding via await will block other coroutines

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 10 / 38

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Async Reactors

5 Backup
Async Traits
Generic Over Async?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 11 / 38

Under The Hood Of Async
trait Future {

type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Self::Output>;

}1

enum Poll<T> {
Ready(T),
Pending,

}

If a type implements Future, you can use the await syntax with it!
Pin, Context: we’ll get to these later

Jack Duvall Concurrency & Parallelism 2 12th April 2023 12 / 38

Under The Hood Of Async
trait Future {

type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Self::Output>;

}1

enum Poll<T> {
Ready(T),
Pending,

}

If a type implements Future, you can use the await syntax with it!

Pin, Context: we’ll get to these later

Jack Duvall Concurrency & Parallelism 2 12th April 2023 12 / 38

Under The Hood Of Async
trait Future {

type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Self::Output>;

}1

enum Poll<T> {
Ready(T),
Pending,

}

If a type implements Future, you can use the await syntax with it!
Pin, Context: we’ll get to these later

Jack Duvall Concurrency & Parallelism 2 12th April 2023 12 / 38

Even Further Under The Hood
How does Rust even turn an async fn into a Future?

State Machines!
Each time you await another future, all the variables that could be used in later
execution are saved into the current state

Jack Duvall Concurrency & Parallelism 2 12th April 2023 13 / 38

Even Further Under The Hood
How does Rust even turn an async fn into a Future?

State Machines!

Each time you await another future, all the variables that could be used in later
execution are saved into the current state

Jack Duvall Concurrency & Parallelism 2 12th April 2023 13 / 38

Even Further Under The Hood
How does Rust even turn an async fn into a Future?

State Machines!
Each time you await another future, all the variables that could be used in later
execution are saved into the current state

Jack Duvall Concurrency & Parallelism 2 12th April 2023 13 / 38

Example Async Function
async fn heartbeat_inc(client: ClientConn) -> Result<(), ConnError> {

let mut i = 0i32;
loop {

let i_string = i.to_string();
client.send(&i_string).await?;
if client.recv().await? != &i_string { break; }
i = i.wrapping_add(1);

}
Ok(())

}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 14 / 38

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Async Reactors

5 Backup
Async Traits
Generic Over Async?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 15 / 38

What Does Pin Mean?

Pin<P> is a type with impls for P: Deref and/or P: DerefMut

P is ”pointer-like”; Deref and DerefMut control what happens when you do *p
Examples: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: “In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 12th April 2023 16 / 38

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

P is ”pointer-like”; Deref and DerefMut control what happens when you do *p
Examples: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: “In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 12th April 2023 16 / 38

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

P is ”pointer-like”; Deref and DerefMut control what happens when you do *p

Examples: &T, &mut T, Box<T>, Rc<T>, Arc<T>
Guarantee: “In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 12th April 2023 16 / 38

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

P is ”pointer-like”; Deref and DerefMut control what happens when you do *p
Examples: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: “In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 12th April 2023 16 / 38

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

P is ”pointer-like”; Deref and DerefMut control what happens when you do *p
Examples: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: “In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”

How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 12th April 2023 16 / 38

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

P is ”pointer-like”; Deref and DerefMut control what happens when you do *p
Examples: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: “In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 12th April 2023 16 / 38

Example Of Pin Doing Something
fn take1(v: &mut Option<String>) -> Option<String> {

v.take()
}
fn take2(v: Pin<&mut Option<String>>) -> Option<String> {

v.take() // compiler error!
}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 17 / 38

Constructing A Pinned Value Is Unsafe
When P: Deref isn’t Unpin, the only way to get one is:

pub unsafe fn new_unchecked(pointer: P) -> Pin<P>

Compiler can’t guarantee data will stay pinned (that’s what the type is for!)
Have to prove safety for yourself, or
Use convenience wrappers (Box::pin, std::pin::pin!) with proven safety

Jack Duvall Concurrency & Parallelism 2 12th April 2023 18 / 38

Constructing A Pinned Value Is Unsafe
When P: Deref isn’t Unpin, the only way to get one is:

pub unsafe fn new_unchecked(pointer: P) -> Pin<P>

Compiler can’t guarantee data will stay pinned (that’s what the type is for!)

Have to prove safety for yourself, or
Use convenience wrappers (Box::pin, std::pin::pin!) with proven safety

Jack Duvall Concurrency & Parallelism 2 12th April 2023 18 / 38

Constructing A Pinned Value Is Unsafe
When P: Deref isn’t Unpin, the only way to get one is:

pub unsafe fn new_unchecked(pointer: P) -> Pin<P>

Compiler can’t guarantee data will stay pinned (that’s what the type is for!)
Have to prove safety for yourself, or

Use convenience wrappers (Box::pin, std::pin::pin!) with proven safety

Jack Duvall Concurrency & Parallelism 2 12th April 2023 18 / 38

Constructing A Pinned Value Is Unsafe
When P: Deref isn’t Unpin, the only way to get one is:

pub unsafe fn new_unchecked(pointer: P) -> Pin<P>

Compiler can’t guarantee data will stay pinned (that’s what the type is for!)
Have to prove safety for yourself, or
Use convenience wrappers (Box::pin, std::pin::pin!) with proven safety

Jack Duvall Concurrency & Parallelism 2 12th April 2023 18 / 38

The Unpin Trait

Some type cannot be self-referential; these implement Unpin

bool, i32, f64, etc.

When <P as Deref>::Target: Unpin, Pin<P> guarantees can be relaxed

Jack Duvall Concurrency & Parallelism 2 12th April 2023 19 / 38

The Unpin Trait
Some type cannot be self-referential; these implement Unpin

bool, i32, f64, etc.
When <P as Deref>::Target: Unpin, Pin<P> guarantees can be relaxed

Jack Duvall Concurrency & Parallelism 2 12th April 2023 19 / 38

The Unpin Trait
Some type cannot be self-referential; these implement Unpin

bool, i32, f64, etc.

When <P as Deref>::Target: Unpin, Pin<P> guarantees can be relaxed

Jack Duvall Concurrency & Parallelism 2 12th April 2023 19 / 38

The Unpin Trait
Some type cannot be self-referential; these implement Unpin

bool, i32, f64, etc.
When <P as Deref>::Target: Unpin, Pin<P> guarantees can be relaxed

Jack Duvall Concurrency & Parallelism 2 12th April 2023 19 / 38

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Async Reactors

5 Backup
Async Traits
Generic Over Async?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 20 / 38

How Do We Run Futures?
(Content taken from Tokio’s Async Tutorital)
Recall: Futures just have a poll method. So let’s call that in a loop! This actually just
works!

fn run(mut fut: impl Future<Output = ()>, cx: &mut Context) {
let fut = pin!(fut);
loop {

if let Poll::Ready(()) = fut.poll(cx) {
break;

}
}

}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 21 / 38

https://tokio.rs/tokio/tutorial/async

Ok But How Do We Actually Run Futures?
Use a pre-built Async Reactor like the ones in tokio, futures::executor, or
async-std

#[tokio::main]
async fn main() {

// Now you can call async functions in here!
}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 22 / 38

Well How Do Those Work?
Back to low-level stuff >:)

Ideally, if you get Poll::Pending, only poll again likely to return Poll::Ready
How to know when it’s likely to return Poll::Ready?
Wakers!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 23 / 38

Well How Do Those Work?
Back to low-level stuff >:)

Ideally, if you get Poll::Pending, only poll again likely to return Poll::Ready

How to know when it’s likely to return Poll::Ready?
Wakers!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 23 / 38

Well How Do Those Work?
Back to low-level stuff >:)

Ideally, if you get Poll::Pending, only poll again likely to return Poll::Ready
How to know when it’s likely to return Poll::Ready?

Wakers!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 23 / 38

Well How Do Those Work?
Back to low-level stuff >:)

Ideally, if you get Poll::Pending, only poll again likely to return Poll::Ready
How to know when it’s likely to return Poll::Ready?
Wakers!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 23 / 38

Wakers

Waker: Clone + Send + Sync + Unpin
Calling .wake() signals the async reactor to poll the Future again.
Context’s only job is to hold a Waker

Jack Duvall Concurrency & Parallelism 2 12th April 2023 24 / 38

Wakers
Waker: Clone + Send + Sync + Unpin

Calling .wake() signals the async reactor to poll the Future again.
Context’s only job is to hold a Waker

Jack Duvall Concurrency & Parallelism 2 12th April 2023 24 / 38

Wakers
Waker: Clone + Send + Sync + Unpin
Calling .wake() signals the async reactor to poll the Future again.

Context’s only job is to hold a Waker

Jack Duvall Concurrency & Parallelism 2 12th April 2023 24 / 38

Wakers
Waker: Clone + Send + Sync + Unpin
Calling .wake() signals the async reactor to poll the Future again.
Context’s only job is to hold a Waker

Jack Duvall Concurrency & Parallelism 2 12th April 2023 24 / 38

Future Example Using A Waker
impl Future for Delay {

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
if Instant::now() >= self.when { Poll::Ready(()) } else {

let waker = cx.waker().clone();
let when = self.when;
thread::spawn(move || {

let now = Instant::now();
if now < when { thread::sleep(when - now); }
waker.wake();

});
Poll::Pending

}
}

}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 25 / 38

Recap

Types implementing Future must be .await-ed
Use async fn to make a function-like future, letting you use .await inside
Use an async runtime like tokio to run your top-level async fn main()

Jack Duvall Concurrency & Parallelism 2 12th April 2023 26 / 38

Recap
Types implementing Future must be .await-ed

Use async fn to make a function-like future, letting you use .await inside
Use an async runtime like tokio to run your top-level async fn main()

Jack Duvall Concurrency & Parallelism 2 12th April 2023 26 / 38

Recap
Types implementing Future must be .await-ed
Use async fn to make a function-like future, letting you use .await inside

Use an async runtime like tokio to run your top-level async fn main()

Jack Duvall Concurrency & Parallelism 2 12th April 2023 26 / 38

Recap
Types implementing Future must be .await-ed
Use async fn to make a function-like future, letting you use .await inside
Use an async runtime like tokio to run your top-level async fn main()

Jack Duvall Concurrency & Parallelism 2 12th April 2023 26 / 38

Homework
Work on the final

Ask us anything!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 27 / 38

Homework
Work on the final
Ask us anything!

Jack Duvall Concurrency & Parallelism 2 12th April 2023 27 / 38

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Async Reactors

5 Backup
Async Traits
Generic Over Async?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 28 / 38

You Can’t Have async fn In Traits (for now)
trait Webserver {

async fn handle(&self, r: Request) -> Response;
}

This only recently got Nightly support, and it’s still incomplete, why is this so hard?

Short Answer: async fn only guarantees a trait, not a type
Long Answer: mostly stolen from Niko Matsakis’ Blog

Jack Duvall Concurrency & Parallelism 2 12th April 2023 29 / 38

https://blog.rust-lang.org/inside-rust/2022/11/17/async-fn-in-trait-nightly.html
https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/

You Can’t Have async fn In Traits (for now)
trait Webserver {

async fn handle(&self, r: Request) -> Response;
}

This only recently got Nightly support, and it’s still incomplete, why is this so hard?
Short Answer: async fn only guarantees a trait, not a type

Long Answer: mostly stolen from Niko Matsakis’ Blog

Jack Duvall Concurrency & Parallelism 2 12th April 2023 29 / 38

https://blog.rust-lang.org/inside-rust/2022/11/17/async-fn-in-trait-nightly.html
https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/

You Can’t Have async fn In Traits (for now)
trait Webserver {

async fn handle(&self, r: Request) -> Response;
}

This only recently got Nightly support, and it’s still incomplete, why is this so hard?
Short Answer: async fn only guarantees a trait, not a type
Long Answer: mostly stolen from Niko Matsakis’ Blog

Jack Duvall Concurrency & Parallelism 2 12th April 2023 29 / 38

https://blog.rust-lang.org/inside-rust/2022/11/17/async-fn-in-trait-nightly.html
https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/

async fn Is Syntatic Sugar For This
trait Webserver {

fn handle(&self, r: Request) ->
impl Future<Output = Response> + '_;

}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 30 / 38

It Gets Funkier
trait Webserver {

type HandleFuture<'a>: Future<Output = Response> + 'a;
fn handle(&'a self, r: Request) -> Self::HandleFuture<'a>;

}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 31 / 38

Unresolved Considerations
What if you wanted to constrain futures returned by an implementation?

fn launch_on_multiple_threads<W>(webserver: W)
where W: Webserver,

for<'a> W::HandleFuture<'a>: Send
{

// `Send` lets us share futures returned by
// `webserver.handle(r)` between threads

}

We needed to know the name of the associated type. Is it auto-generated? Do
people always need to desugar manually?
If you use a lot of futures, there’s a lot more Send bounds you need; is there a
better way to combine them all?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 32 / 38

Unresolved Considerations
What if you wanted to constrain futures returned by an implementation?

fn launch_on_multiple_threads<W>(webserver: W)
where W: Webserver,

for<'a> W::HandleFuture<'a>: Send
{

// `Send` lets us share futures returned by
// `webserver.handle(r)` between threads

}

We needed to know the name of the associated type. Is it auto-generated? Do
people always need to desugar manually?

If you use a lot of futures, there’s a lot more Send bounds you need; is there a
better way to combine them all?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 32 / 38

Unresolved Considerations
What if you wanted to constrain futures returned by an implementation?

fn launch_on_multiple_threads<W>(webserver: W)
where W: Webserver,

for<'a> W::HandleFuture<'a>: Send
{

// `Send` lets us share futures returned by
// `webserver.handle(r)` between threads

}

We needed to know the name of the associated type. Is it auto-generated? Do
people always need to desugar manually?
If you use a lot of futures, there’s a lot more Send bounds you need; is there a
better way to combine them all?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 32 / 38

Even More Considerations
If you use regular generics, many copies of code are made. Could be better to force the
use of trait objects:

trait Webserver {
fn handle(&self, r: Request) ->

dyn Future<Output = Response> + '_;
}

New problem: now the return type isn’t Sized (don’t know the size at compile time),
so we can’t generate code!
Need a wrapper, but how to choose between Box, Arc, others?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 33 / 38

Even More Considerations
If you use regular generics, many copies of code are made. Could be better to force the
use of trait objects:

trait Webserver {
fn handle(&self, r: Request) ->

dyn Future<Output = Response> + '_;
}

New problem: now the return type isn’t Sized (don’t know the size at compile time),
so we can’t generate code!

Need a wrapper, but how to choose between Box, Arc, others?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 33 / 38

Even More Considerations
If you use regular generics, many copies of code are made. Could be better to force the
use of trait objects:

trait Webserver {
fn handle(&self, r: Request) ->

dyn Future<Output = Response> + '_;
}

New problem: now the return type isn’t Sized (don’t know the size at compile time),
so we can’t generate code!
Need a wrapper, but how to choose between Box, Arc, others?

Jack Duvall Concurrency & Parallelism 2 12th April 2023 33 / 38

A Good Enough Solution: async-trait Crate
Applying #[async_trait] to the original trait with an async fn results in the
following desugaring:

trait Webserver {
fn handle(&self, r: Request) ->

Pin<Box<dyn Future<Output=Response> + Send + '_>>;
}

mm delicous type + trait soup

Jack Duvall Concurrency & Parallelism 2 12th April 2023 34 / 38

A Good Enough Solution: async-trait Crate
Applying #[async_trait] to the original trait with an async fn results in the
following desugaring:

trait Webserver {
fn handle(&self, r: Request) ->

Pin<Box<dyn Future<Output=Response> + Send + '_>>;
}

mm delicous type + trait soup

Jack Duvall Concurrency & Parallelism 2 12th April 2023 34 / 38

So You Give A Crab A Coroutine...
... and suddenly they demand to write all their library code with async!
Examples:

trait Mappable {
type Item;
fn map(&mut self, f: impl Fn(&mut Self::Item));
async fn map_async<F, Fut>(&mut self, f: F)
where

F: Fn(&mut Self::Item) -> Fut,
Fut: Future<Output=()>;

}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 35 / 38

Async Leads To Code Duplication(?)
impl<T: Sized> Mappable for Vec<T> {

type Item = T;
fn map(&mut self, f: impl Fn(&mut Self::Item)) {

for x in self.iter_mut() {
f(x);

}
}
async fn map_async<F, Fut>(&mut self, f: F)
where

F: Fn(&mut Self::Item) -> Fut,
Fut: Future<Output=()>

{
for x in self.iter_mut() {

f(x).await;
}

}
}

Jack Duvall Concurrency & Parallelism 2 12th April 2023 36 / 38

“Let’s Solve This Problem”
trait Mappable {

type Item;
?async fn map(&mut self, f: impl ?async Fn(&mut Self::Item));

}

impl<T> Mappable for Vec<T> {
?async fn map(&mut self, f: impl ?async Fn(&mut Self::Item)) {

for x in self.iter_mut() {
f(x).await;

}
}

}

“Wow so much better!”

Jack Duvall Concurrency & Parallelism 2 12th April 2023 37 / 38

Wait, Do We Actually Need This?
There was a lot of pushback in the community at this proposal. Questions of whether
it would be a better idea to just have a ”possibly async” trait that implementors could
opt-in to or whether the main AsyncIterator usecase was even a good idea.
both of the above blogs have lots of other posts talking about this, very good reads

Jack Duvall Concurrency & Parallelism 2 12th April 2023 38 / 38

http://smallcultfollowing.com/babysteps/blog/2023/03/03/trait-transformers-send-bounds-part-3/
http://smallcultfollowing.com/babysteps/blog/2023/03/03/trait-transformers-send-bounds-part-3/
https://without.boats/blog/async-iterator/

	Async/Await
	The Future Trait
	Pin Type
	Async Reactors
	Backup
	Async Traits
	Generic Over Async?

