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Course Goals

Give an overview of Rust’s features
Be up-to-date with the language (Rust 2021)
Take you from beginner to advanced rust topics

To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals

Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust
Be comprehensive or professional
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Syllabus Stuff

StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%
Midterm: 5%
Final: 35%
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Why Rust?

C & C++ need to be replaced
Goals:

Great performance, easily
Reliable and safe
Good tooling

Incorporate modern ideas in progamming language design
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Rust Goal: Great Performance, Easily

C-like abstractions, program “close to the hardware”
“Zero-Cost Abstractions”: paid at compile time, code is fast at runtime
Use LLVM for robust optimizations on many platforms
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Rust Goal: Reliable And Safe

Ideally: “if it compiles, it’s safe”
Safe memory management is core of the language
Comprehensive standard library
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Code You Can’t Write in Rust
int *my_cool_fn(void) {

int x = 0;
return &x;

}

fn my_cool_fn() -> &i32 {
let x = 0;
return &x;

}
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Code You Can’t Write in Rust
void foo() {

auto v = std::vector{1, 2, 3, 4};
auto& x = v[0];
v.push_back(5);
v[0] = 6;
std::cout << x << " == " << v[0] << std::endl;

}

fn foo() {
let mut v = vec![1, 2, 3, 4];
let x = &v[0];
v.push(5);
v[0] = 6;
println!("{} == {}", x, v[0]);

}
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Rust Goal: Good Tooling

Easy to install on any supported platform
Great package manager
Robust package ecosystem
Linting, code formatting, documentation, testing, and autocomplete are first-class
features
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Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.
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Mutable variables
In most imperative languages, variables are mutable by default.

int fact(int n) {
int ans = 1;
while (n) {

ans *= n;
n--;

}
return ans;

}

If we want a variable to be immutable we have to enforce this with a keyword like
const or similar.
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Rust, on the other hand, flips this. If we try the same in Rust:
fn fact(n: u32) -> u32 {

let ans = 1;
while n != 0 {

ans *= n;
n -= 1;

}
ans

}

we’d see an error like
error[E0384]: cannot assign to immutable argument `n`
--> src/lib.rs:5:17
|

1 | fn fact(n: u32) -> u32 {
| - help: consider making this binding mutable: `mut n`

...
5 | n -= 1;
| ^^^^^^ cannot assign to immutable argument
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In order to mark a variable as mutable, we need to have mut at the binding site.

fn fact(mut n: u32) -> u32 {
let mut ans = 1;
while n != 0 {

ans *= n;
n -= 1;

}
ans

}

This then permits later assignments through that binding.
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Shadowing
fn main() {

let x = 1;
println!("x is {}", x);
let x = 98008;
println!("x is {}", x);

}

What about this code? Does it run afoul of our rules about changing variables?

No! We haven’t changed anything here—there just happens to be a second, new
variable we’ve also called x.
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While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].
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References and Borrowing
Instead of working directly with pointers (often called “raw” pointers in Rust), we’ll
typically use references instead.

fn main() {
let x = 9;
let y = 2;
assert_eq!(compute_sum(&x, &y), 11);

}

fn compute_sum(a: &i32, b: &i32) -> i32 {
a + b

}
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Mutable References
What if we want to mutate a value through a reference?

fn main() {
let x = 0;
incr(&x);
assert_eq!(x, 1);

}

fn incr(x: &i32) {
*x += 1

}

Doesn’t work!
error[E0594]: cannot assign to `*x`, which is behind a `&` reference
--> src/main.rs:8:13
|

7 | fn incr(x: &i32) {
| ---- help: consider changing this to be a mutable reference: `&mut i32`

8 | *x += 1
| ^^^^^^^ `x` is a `&` reference, so the data it refers to cannot be written
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If we want a mutable reference we need to ask for it explicitly:

fn incr(x: &mut i32) {
*x += 1

}

and we need to be explicit when borrowing:

fn main() {
let mut x = 0;
incr(&mut x);
assert_eq!(x, 1);

}

Note that in order to borrow x mutably, it has to be mutably bound.
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Tuples
One of the simplest types of aggregate data in Rust is a tuple.

let x: (i32, bool) = (7, true);

Which we can also destructure into its components via binding:

let (i, b) = x;

or accessed by position:

let y = x.0 + 3;
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Tuples can have many distinct fields, which may themselves be of any type

let x = (1, 3e-7, false, "Hello!");

and can be returned from functions, or used as arguments

fn divmod(n: u32, k: u32) -> (u32, u32) {
if n < k {

(0, n)
} else {

let (q, d) = divmod(n, n - k);
(q + 1, d)

}
}

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 26 / 34



Arrays
Rust also has arrays, which provide for storage for many elements which have the same
type. The size of an array must be statically known, and arrays cannot be resized.
We write array types [T; N] for an N element array with element type T.

let x: [i32; 5] = [0, 1, 2, 3, 4];
let mut y: [i32; 100] = [0; 100];

Accessing an element in the array is fairly standard:

y[0] = x[1] + x[3];
assert_eq!(y[0], 4);

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 27 / 34



Arrays
Rust also has arrays, which provide for storage for many elements which have the same
type. The size of an array must be statically known, and arrays cannot be resized.
We write array types [T; N] for an N element array with element type T.

let x: [i32; 5] = [0, 1, 2, 3, 4];
let mut y: [i32; 100] = [0; 100];

Accessing an element in the array is fairly standard:

y[0] = x[1] + x[3];
assert_eq!(y[0], 4);

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 27 / 34



What if we index out-of-bounds?

let mut x = [1, 2, 3];
x[4] = 7;

Unlike C, there’s no undefined behaviour here! Instead, the program will
“panic”—there are some settings for exactly what this means, but by default you’ll get
a backtrace and the program will terminate.
thread 'main' panicked at 'index out of bounds: the len is 1 but the index is 1', src/main.rs:4:5
stack backtrace:

0: rust_begin_unwind
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/std/src/panicking.rs:498:5

1: core::panicking::panic_fmt
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:107:14

2: core::panicking::panic_bounds_check
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:75:5

3: playground::main
at ./src/main.rs:4:5

4: core::ops::function::FnOnce::call_once
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/ops/function.rs:227:5

note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.
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Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.

What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34



Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.

What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34



Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?

What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34



Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?
What if x doesn’t point to n elements?

What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34



Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34



We can avoid these issues by using a “slice” type in Rust.

[T] is an unsized type representing some contiguous sequence of elements of type
T—this isn’t very useful on its own, because we don’t know how big it is!

Using a reference, we can get something we do know the size of:
&[T] is the type of shared slices
&mut [T] is the type of mutable/exclusive slices

Both of these will additionally store a length, along with a pointer to the start of the
slice.
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So if we want to sum an array in Rust, we might instead have:

fn sum(xs: &[i32]) -> i32 {
let mut sum = 0;
for x in xs {

sum += x;
}
sum

}

which we could use like so:

let x = [1, 2, 3, 4];

assert_eq!(sum(&x[ .. ]), 10);
assert_eq!(sum(&x[1.. ]), 9);
assert_eq!(sum(&x[ ..2]), 3);
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Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let mut x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });
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Next Class
Pattern matching
impl blocks
Ownership, lifetimes, and the borrow system
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Homework
Install Rust: https://rustup.rs/

You can do this on your own machine
You can also do this on the cluster machines!

unix.andrew.cmu.edu has Rust 1.59.0 pre-installed.
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