
Intro To Rust
structs, enums, pattern matching, and other basic
syntax

Cooper Pierce & Jack Duvall

Discord server: https://discord.gg/AdeC2dhNvr

Course website: https://rust-stuco.github.io/

Knowledge check: https://forms.gle/5mcChwcdQMksMayh9

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 1 / 34

https://discord.gg/AdeC2dhNvr
https://rust-stuco.github.io/
https://forms.gle/5mcChwcdQMksMayh9

Outline

1 About The Course

2 What Is Rust?

3 Rust Basics

4 Structed Data

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 2 / 34

Cooper Pierce
SCS Senior
Rust Experience: mostly around LSP & Compiler implementations
Links:

https://github.com/kopecs

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 3 / 34

https://github.com/kopecs

Jack Duvall
SCS Senior
Rust Experience: Personal Projects, 15-451, FB Internship
Links:

https://github.com/duvallj
https://duvallj.pw

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 4 / 34

https://github.com/duvallj
https://duvallj.pw

Course Goals

Give an overview of Rust’s features
Be up-to-date with the language (Rust 2021)
Take you from beginner to advanced rust topics

To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals

Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust
Be comprehensive or professional

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 5 / 34

Course Goals
Give an overview of Rust’s features

Be up-to-date with the language (Rust 2021)
Take you from beginner to advanced rust topics

To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals

Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust
Be comprehensive or professional

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 5 / 34

Course Goals
Give an overview of Rust’s features
Be up-to-date with the language (Rust 2021)

Take you from beginner to advanced rust topics
To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals

Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust
Be comprehensive or professional

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 5 / 34

Course Goals
Give an overview of Rust’s features
Be up-to-date with the language (Rust 2021)
Take you from beginner to advanced rust topics

To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals

Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust
Be comprehensive or professional

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 5 / 34

Course Goals
Give an overview of Rust’s features
Be up-to-date with the language (Rust 2021)
Take you from beginner to advanced rust topics

To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals

Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust
Be comprehensive or professional

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 5 / 34

Course Goals
Give an overview of Rust’s features
Be up-to-date with the language (Rust 2021)
Take you from beginner to advanced rust topics

To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals

Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust
Be comprehensive or professional

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 5 / 34

Course Goals
Give an overview of Rust’s features
Be up-to-date with the language (Rust 2021)
Take you from beginner to advanced rust topics

To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals
Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust

Be comprehensive or professional

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 5 / 34

Course Goals
Give an overview of Rust’s features
Be up-to-date with the language (Rust 2021)
Take you from beginner to advanced rust topics

To these ends, familiarity with topics covered in 15-122 and 15-150 is assumed.

Course Non-Goals
Replace https://doc.rust-lang.org/stable/book/ as the premier way to learn Rust
Be comprehensive or professional

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 5 / 34

Syllabus Stuff

StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%
Midterm: 5%
Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Syllabus Stuff
StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%
Midterm: 5%
Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Syllabus Stuff
StuCo policy: Only 2 unexcused absences

⇒ we must take attendance

Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%
Midterm: 5%
Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Syllabus Stuff
StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%
Midterm: 5%
Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Syllabus Stuff
StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%
Midterm: 5%
Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Syllabus Stuff
StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%

Homework: 10%
Midterm: 5%
Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Syllabus Stuff
StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%

Midterm: 5%
Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Syllabus Stuff
StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%
Midterm: 5%

Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Syllabus Stuff
StuCo policy: Only 2 unexcused absences

⇒ we must take attendance
Just let us know via email/Discord if you expect to miss a class

rust-stuco-staff@lists.andrew.cmu.edu goes to both of us

Participation: 50%
Homework: 10%
Midterm: 5%
Final: 35%

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 6 / 34

mailto:rust-stuco-staff@lists.andrew.cmu.edu

Outline

1 About The Course

2 What Is Rust?

3 Rust Basics

4 Structed Data

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 7 / 34

Why Rust?

C & C++ need to be replaced
Goals:

Great performance, easily
Reliable and safe
Good tooling

Incorporate modern ideas in progamming language design

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 8 / 34

Why Rust?
C & C++ need to be replaced

Goals:

Great performance, easily
Reliable and safe
Good tooling

Incorporate modern ideas in progamming language design

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 8 / 34

Why Rust?
C & C++ need to be replaced
Goals:

Great performance, easily
Reliable and safe
Good tooling

Incorporate modern ideas in progamming language design

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 8 / 34

Why Rust?
C & C++ need to be replaced
Goals:

Great performance, easily

Reliable and safe
Good tooling

Incorporate modern ideas in progamming language design

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 8 / 34

Why Rust?
C & C++ need to be replaced
Goals:

Great performance, easily
Reliable and safe

Good tooling
Incorporate modern ideas in progamming language design

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 8 / 34

Why Rust?
C & C++ need to be replaced
Goals:

Great performance, easily
Reliable and safe
Good tooling

Incorporate modern ideas in progamming language design

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 8 / 34

Why Rust?
C & C++ need to be replaced
Goals:

Great performance, easily
Reliable and safe
Good tooling

Incorporate modern ideas in progamming language design

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 8 / 34

Rust Goal: Great Performance, Easily

C-like abstractions, program “close to the hardware”
“Zero-Cost Abstractions”: paid at compile time, code is fast at runtime
Use LLVM for robust optimizations on many platforms

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 9 / 34

Rust Goal: Great Performance, Easily
C-like abstractions, program “close to the hardware”

“Zero-Cost Abstractions”: paid at compile time, code is fast at runtime
Use LLVM for robust optimizations on many platforms

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 9 / 34

Rust Goal: Great Performance, Easily
C-like abstractions, program “close to the hardware”
“Zero-Cost Abstractions”: paid at compile time, code is fast at runtime

Use LLVM for robust optimizations on many platforms

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 9 / 34

Rust Goal: Great Performance, Easily
C-like abstractions, program “close to the hardware”
“Zero-Cost Abstractions”: paid at compile time, code is fast at runtime
Use LLVM for robust optimizations on many platforms

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 9 / 34

Rust Goal: Reliable And Safe

Ideally: “if it compiles, it’s safe”
Safe memory management is core of the language
Comprehensive standard library

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 10 / 34

Rust Goal: Reliable And Safe
Ideally: “if it compiles, it’s safe”

Safe memory management is core of the language
Comprehensive standard library

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 10 / 34

Rust Goal: Reliable And Safe
Ideally: “if it compiles, it’s safe”
Safe memory management is core of the language

Comprehensive standard library

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 10 / 34

Rust Goal: Reliable And Safe
Ideally: “if it compiles, it’s safe”
Safe memory management is core of the language
Comprehensive standard library

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 10 / 34

Code You Can’t Write in Rust
int *my_cool_fn(void) {

int x = 0;
return &x;

}

fn my_cool_fn() -> &i32 {
let x = 0;
return &x;

}

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 11 / 34

Code You Can’t Write in Rust
int *my_cool_fn(void) {

int x = 0;
return &x;

}

fn my_cool_fn() -> &i32 {
let x = 0;
return &x;

}

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 11 / 34

Code You Can’t Write in Rust
void foo() {

auto v = std::vector{1, 2, 3, 4};
auto& x = v[0];
v.push_back(5);
v[0] = 6;
std::cout << x << " == " << v[0] << std::endl;

}

fn foo() {
let mut v = vec![1, 2, 3, 4];
let x = &v[0];
v.push(5);
v[0] = 6;
println!("{} == {}", x, v[0]);

}

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 12 / 34

Code You Can’t Write in Rust
void foo() {

auto v = std::vector{1, 2, 3, 4};
auto& x = v[0];
v.push_back(5);
v[0] = 6;
std::cout << x << " == " << v[0] << std::endl;

}

fn foo() {
let mut v = vec![1, 2, 3, 4];
let x = &v[0];
v.push(5);
v[0] = 6;
println!("{} == {}", x, v[0]);

}

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 12 / 34

Rust Goal: Good Tooling

Easy to install on any supported platform
Great package manager
Robust package ecosystem
Linting, code formatting, documentation, testing, and autocomplete are first-class
features

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 13 / 34

Rust Goal: Good Tooling
Easy to install on any supported platform

Great package manager
Robust package ecosystem
Linting, code formatting, documentation, testing, and autocomplete are first-class
features

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 13 / 34

Rust Goal: Good Tooling
Easy to install on any supported platform
Great package manager

Robust package ecosystem
Linting, code formatting, documentation, testing, and autocomplete are first-class
features

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 13 / 34

Rust Goal: Good Tooling
Easy to install on any supported platform
Great package manager
Robust package ecosystem

Linting, code formatting, documentation, testing, and autocomplete are first-class
features

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 13 / 34

Rust Goal: Good Tooling
Easy to install on any supported platform
Great package manager
Robust package ecosystem
Linting, code formatting, documentation, testing, and autocomplete are first-class
features

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 13 / 34

Outline

1 About The Course

2 What Is Rust?

3 Rust Basics

4 Structed Data

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 14 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 15 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.

Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 15 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.

We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 15 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.

Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 15 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.

Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 15 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.

We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 15 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 15 / 34

Mutable variables
In most imperative languages, variables are mutable by default.

int fact(int n) {
int ans = 1;
while (n) {

ans *= n;
n--;

}
return ans;

}

If we want a variable to be immutable we have to enforce this with a keyword like
const or similar.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 16 / 34

Rust, on the other hand, flips this. If we try the same in Rust:
fn fact(n: u32) -> u32 {

let ans = 1;
while n != 0 {

ans *= n;
n -= 1;

}
ans

}

we’d see an error like
error[E0384]: cannot assign to immutable argument `n`
--> src/lib.rs:5:17
|

1 | fn fact(n: u32) -> u32 {
| - help: consider making this binding mutable: `mut n`

...
5 | n -= 1;
| ^^^^^^ cannot assign to immutable argument

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 17 / 34

In order to mark a variable as mutable, we need to have mut at the binding site.

fn fact(mut n: u32) -> u32 {
let mut ans = 1;
while n != 0 {

ans *= n;
n -= 1;

}
ans

}

This then permits later assignments through that binding.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 18 / 34

Shadowing
fn main() {

let x = 1;
println!("x is {}", x);
let x = 98008;
println!("x is {}", x);

}

What about this code? Does it run afoul of our rules about changing variables?

No! We haven’t changed anything here—there just happens to be a second, new
variable we’ve also called x.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 19 / 34

Shadowing
fn main() {

let x = 1;
println!("x is {}", x);
let x = 98008;
println!("x is {}", x);

}

What about this code? Does it run afoul of our rules about changing variables?

No! We haven’t changed anything here—there just happens to be a second, new
variable we’ve also called x.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 19 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 20 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 20 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 20 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 20 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 20 / 34

References and Borrowing
Instead of working directly with pointers (often called “raw” pointers in Rust), we’ll
typically use references instead.

fn main() {
let x = 9;
let y = 2;
assert_eq!(compute_sum(&x, &y), 11);

}

fn compute_sum(a: &i32, b: &i32) -> i32 {
a + b

}

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 21 / 34

Mutable References
What if we want to mutate a value through a reference?

fn main() {
let x = 0;
incr(&x);
assert_eq!(x, 1);

}

fn incr(x: &i32) {
*x += 1

}

Doesn’t work!
error[E0594]: cannot assign to `*x`, which is behind a `&` reference
--> src/main.rs:8:13
|

7 | fn incr(x: &i32) {
| ---- help: consider changing this to be a mutable reference: `&mut i32`

8 | *x += 1
| ^^^^^^^ `x` is a `&` reference, so the data it refers to cannot be written

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 22 / 34

Mutable References
What if we want to mutate a value through a reference?

fn main() {
let x = 0;
incr(&x);
assert_eq!(x, 1);

}

fn incr(x: &i32) {
*x += 1

}

Doesn’t work!
error[E0594]: cannot assign to `*x`, which is behind a `&` reference
--> src/main.rs:8:13
|

7 | fn incr(x: &i32) {
| ---- help: consider changing this to be a mutable reference: `&mut i32`

8 | *x += 1
| ^^^^^^^ `x` is a `&` reference, so the data it refers to cannot be written

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 22 / 34

If we want a mutable reference we need to ask for it explicitly:

fn incr(x: &mut i32) {
*x += 1

}

and we need to be explicit when borrowing:

fn main() {
let mut x = 0;
incr(&mut x);
assert_eq!(x, 1);

}

Note that in order to borrow x mutably, it has to be mutably bound.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 23 / 34

If we want a mutable reference we need to ask for it explicitly:

fn incr(x: &mut i32) {
*x += 1

}

and we need to be explicit when borrowing:

fn main() {
let mut x = 0;
incr(&mut x);
assert_eq!(x, 1);

}

Note that in order to borrow x mutably, it has to be mutably bound.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 23 / 34

Outline

1 About The Course

2 What Is Rust?

3 Rust Basics

4 Structed Data

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 24 / 34

Tuples
One of the simplest types of aggregate data in Rust is a tuple.

let x: (i32, bool) = (7, true);

Which we can also destructure into its components via binding:

let (i, b) = x;

or accessed by position:

let y = x.0 + 3;

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 25 / 34

Tuples
One of the simplest types of aggregate data in Rust is a tuple.

let x: (i32, bool) = (7, true);

Which we can also destructure into its components via binding:

let (i, b) = x;

or accessed by position:

let y = x.0 + 3;

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 25 / 34

Tuples
One of the simplest types of aggregate data in Rust is a tuple.

let x: (i32, bool) = (7, true);

Which we can also destructure into its components via binding:

let (i, b) = x;

or accessed by position:

let y = x.0 + 3;

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 25 / 34

Tuples can have many distinct fields, which may themselves be of any type

let x = (1, 3e-7, false, "Hello!");

and can be returned from functions, or used as arguments

fn divmod(n: u32, k: u32) -> (u32, u32) {
if n < k {

(0, n)
} else {

let (q, d) = divmod(n, n - k);
(q + 1, d)

}
}

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 26 / 34

Arrays
Rust also has arrays, which provide for storage for many elements which have the same
type. The size of an array must be statically known, and arrays cannot be resized.
We write array types [T; N] for an N element array with element type T.

let x: [i32; 5] = [0, 1, 2, 3, 4];
let mut y: [i32; 100] = [0; 100];

Accessing an element in the array is fairly standard:

y[0] = x[1] + x[3];
assert_eq!(y[0], 4);

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 27 / 34

Arrays
Rust also has arrays, which provide for storage for many elements which have the same
type. The size of an array must be statically known, and arrays cannot be resized.
We write array types [T; N] for an N element array with element type T.

let x: [i32; 5] = [0, 1, 2, 3, 4];
let mut y: [i32; 100] = [0; 100];

Accessing an element in the array is fairly standard:

y[0] = x[1] + x[3];
assert_eq!(y[0], 4);

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 27 / 34

What if we index out-of-bounds?

let mut x = [1, 2, 3];
x[4] = 7;

Unlike C, there’s no undefined behaviour here! Instead, the program will
“panic”—there are some settings for exactly what this means, but by default you’ll get
a backtrace and the program will terminate.
thread 'main' panicked at 'index out of bounds: the len is 1 but the index is 1', src/main.rs:4:5
stack backtrace:

0: rust_begin_unwind
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/std/src/panicking.rs:498:5

1: core::panicking::panic_fmt
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:107:14

2: core::panicking::panic_bounds_check
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:75:5

3: playground::main
at ./src/main.rs:4:5

4: core::ops::function::FnOnce::call_once
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/ops/function.rs:227:5

note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 28 / 34

What if we index out-of-bounds?

let mut x = [1, 2, 3];
x[4] = 7;

Unlike C, there’s no undefined behaviour here! Instead, the program will
“panic”—there are some settings for exactly what this means, but by default you’ll get
a backtrace and the program will terminate.
thread 'main' panicked at 'index out of bounds: the len is 1 but the index is 1', src/main.rs:4:5
stack backtrace:

0: rust_begin_unwind
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/std/src/panicking.rs:498:5

1: core::panicking::panic_fmt
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:107:14

2: core::panicking::panic_bounds_check
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:75:5

3: playground::main
at ./src/main.rs:4:5

4: core::ops::function::FnOnce::call_once
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/ops/function.rs:227:5

note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 28 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.

What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.

What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?

What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?
What if x doesn’t point to n elements?

What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 29 / 34

We can avoid these issues by using a “slice” type in Rust.

[T] is an unsized type representing some contiguous sequence of elements of type
T—this isn’t very useful on its own, because we don’t know how big it is!

Using a reference, we can get something we do know the size of:
&[T] is the type of shared slices
&mut [T] is the type of mutable/exclusive slices

Both of these will additionally store a length, along with a pointer to the start of the
slice.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 30 / 34

We can avoid these issues by using a “slice” type in Rust.

[T] is an unsized type representing some contiguous sequence of elements of type
T—this isn’t very useful on its own, because we don’t know how big it is!

Using a reference, we can get something we do know the size of:
&[T] is the type of shared slices
&mut [T] is the type of mutable/exclusive slices

Both of these will additionally store a length, along with a pointer to the start of the
slice.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 30 / 34

So if we want to sum an array in Rust, we might instead have:

fn sum(xs: &[i32]) -> i32 {
let mut sum = 0;
for x in xs {

sum += x;
}
sum

}

which we could use like so:

let x = [1, 2, 3, 4];

assert_eq!(sum(&x[..]), 10);
assert_eq!(sum(&x[1..]), 9);
assert_eq!(sum(&x[..2]), 3);

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 31 / 34

So if we want to sum an array in Rust, we might instead have:

fn sum(xs: &[i32]) -> i32 {
let mut sum = 0;
for x in xs {

sum += x;
}
sum

}

which we could use like so:

let x = [1, 2, 3, 4];

assert_eq!(sum(&x[..]), 10);
assert_eq!(sum(&x[1..]), 9);
assert_eq!(sum(&x[..2]), 3);

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 31 / 34

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let mut x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 32 / 34

https://doc.rust-lang.org/std/vec/struct.Vec.html

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let mut x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 32 / 34

https://doc.rust-lang.org/std/vec/struct.Vec.html

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let mut x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 32 / 34

https://doc.rust-lang.org/std/vec/struct.Vec.html

Next Class
Pattern matching
impl blocks
Ownership, lifetimes, and the borrow system

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 33 / 34

Homework
Install Rust: https://rustup.rs/

You can do this on your own machine
You can also do this on the cluster machines!

unix.andrew.cmu.edu has Rust 1.59.0 pre-installed.

Cooper Pierce & Jack Duvall Intro To Rust 31st August 2022 34 / 34

https://rustup.rs/

	About The Course
	What Is Rust?
	Rust Basics
	Structed Data

