
More Syntax and Borrowing
struct, enum, impl, match, and the Borrow
Checker

Cooper Pierce & Jack Duvall

Outline
1 structs and enums

2 Control Flow

3 impl blocks

4 match expressions

5 Ownership

6 References/Borrowing

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 1 / 41

structs
Like many other languages, Rust supports structs.
We can have traditional, C-style structs:

struct Student {
andrewid: [u8; 8],
name: String,
section: char,

}

or named tuple style structs:

struct Fraction(u32, u32);

or unit structs:

struct Refl;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 2 / 41

structs
Like many other languages, Rust supports structs.
We can have traditional, C-style structs:

struct Student {
andrewid: [u8; 8],
name: String,
section: char,

}

or named tuple style structs:

struct Fraction(u32, u32);

or unit structs:

struct Refl;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 2 / 41

structs
Like many other languages, Rust supports structs.
We can have traditional, C-style structs:

struct Student {
andrewid: [u8; 8],
name: String,
section: char,

}

or named tuple style structs:

struct Fraction(u32, u32);

or unit structs:

struct Refl;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 2 / 41

Every field of a struct must be assigned a value when initialising it.

let jack = Student {
andrewid: [b'j', b'r', b'd', b'u', b'v', b'a', b'l', b'l'],
name: String::from("Jack Duvall"),
section: 'A',

};

If there are local variables with the same name, we can shortcut this somewhat:

// Dereference because this gives a reference to the array.
let andrewid = *b"cppierce";
let name = String::from("Cooper Pierce");
let section = 'A';
let cooper = Student { andrewid, name, section };

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 3 / 41

Every field of a struct must be assigned a value when initialising it.

let jack = Student {
andrewid: [b'j', b'r', b'd', b'u', b'v', b'a', b'l', b'l'],
name: String::from("Jack Duvall"),
section: 'A',

};

If there are local variables with the same name, we can shortcut this somewhat:

// Dereference because this gives a reference to the array.
let andrewid = *b"cppierce";
let name = String::from("Cooper Pierce");
let section = 'A';
let cooper = Student { andrewid, name, section };

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 3 / 41

Member access for structs is similar to C, with the exception of eliminating ->. A
period . is used for both acessing through reference and direct access.

assert_ne!(cooper.andrewid, jack.andrewid);

let s = &cooper;
assert_eq!(cooper.name, s.name);

Fields of named-tuple structs are accessed the same as tuples.

let f = Fraction(3, 10);
fn get_denominator(f: Fraction) -> u32 { f.1 }

Unit structs behave exactly like the unnamed unit ():

let x: Refl = Refl;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 4 / 41

Member access for structs is similar to C, with the exception of eliminating ->. A
period . is used for both acessing through reference and direct access.

assert_ne!(cooper.andrewid, jack.andrewid);

let s = &cooper;
assert_eq!(cooper.name, s.name);

Fields of named-tuple structs are accessed the same as tuples.

let f = Fraction(3, 10);
fn get_denominator(f: Fraction) -> u32 { f.1 }

Unit structs behave exactly like the unnamed unit ():

let x: Refl = Refl;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 4 / 41

Member access for structs is similar to C, with the exception of eliminating ->. A
period . is used for both acessing through reference and direct access.

assert_ne!(cooper.andrewid, jack.andrewid);

let s = &cooper;
assert_eq!(cooper.name, s.name);

Fields of named-tuple structs are accessed the same as tuples.

let f = Fraction(3, 10);
fn get_denominator(f: Fraction) -> u32 { f.1 }

Unit structs behave exactly like the unnamed unit ():

let x: Refl = Refl;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 4 / 41

enums
Rust also has enums. Both C-style “named constants” like

enum Weekday {
Monday,
Tuesday,
Wednesday,
Thursday,
Friday

}

which are kept in their own namespace (like C++ enum classes):

let today = Weekday::Wednesday;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 5 / 41

enums
Rust also has enums. Both C-style “named constants” like

enum Weekday {
Monday,
Tuesday,
Wednesday,
Thursday,
Friday

}

which are kept in their own namespace (like C++ enum classes):

let today = Weekday::Wednesday;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 5 / 41

And also more functionally-inspiried ones with data:

enum Number {
Rational { numer: u32, denom: u32, sign: bool }
Float(f64),
Int(i32),
Infinity,

}

Which we can use similarily:

let f = Number::Float(1.6);
let r = Number::Rational { numer: 3, denom: 8, sign: true };

What would an enum for sign look like?

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 6 / 41

And also more functionally-inspiried ones with data:

enum Number {
Rational { numer: u32, denom: u32, sign: bool }
Float(f64),
Int(i32),
Infinity,

}

Which we can use similarily:

let f = Number::Float(1.6);
let r = Number::Rational { numer: 3, denom: 8, sign: true };

What would an enum for sign look like?

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 6 / 41

And also more functionally-inspiried ones with data:

enum Number {
Rational { numer: u32, denom: u32, sign: bool }
Float(f64),
Int(i32),
Infinity,

}

Which we can use similarily:

let f = Number::Float(1.6);
let r = Number::Rational { numer: 3, denom: 8, sign: true };

What would an enum for sign look like?

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 6 / 41

Outline
1 structs and enums

2 Control Flow

3 impl blocks

4 match expressions

5 Ownership

6 References/Borrowing

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 7 / 41

if expressions
Similar to functional programming languages, if does not introduce a statement, but
instead an expression.

So while we can do

let x;
if some_condition {

x = 7;
} else {

x = 9
}

You’d typically see

let x = if some_condition { 7 } else { 9 };

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 8 / 41

if expressions
Similar to functional programming languages, if does not introduce a statement, but
instead an expression.

So while we can do

let x;
if some_condition {

x = 7;
} else {

x = 9
}

You’d typically see

let x = if some_condition { 7 } else { 9 };

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 8 / 41

If we omit the else branch the if branch must evaluate to unit—()

if is_admin(user) {
println!("Hello administrator!");

}

Note that any expression followed by a semicolon will be an expression which discards
the result and evaluates to unit.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 9 / 41

If we omit the else branch the if branch must evaluate to unit—()

if is_admin(user) {
println!("Hello administrator!");

}

Note that any expression followed by a semicolon will be an expression which discards
the result and evaluates to unit.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 9 / 41

while loops
We have the typical while loop:

fn exp(mut n: i32) -> i32 {
let mut b = 2;
let mut x = 1;
while n > 1 {

if n % 2 == 1 {
x = x * b;

}
b *= b;
n /= 2;

}
x * b

}

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 10 / 41

for loops
and iterator-based for loops:

let nums = [1, 2, 3, 4, 5];
for n in nums {

println!("{}", n);
}

Range types are often useful here:

for i in 0..n {
println("{} squared is {}", i, i * i);

}

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 11 / 41

for loops
and iterator-based for loops:

let nums = [1, 2, 3, 4, 5];
for n in nums {

println!("{}", n);
}

Range types are often useful here:

for i in 0..n {
println("{} squared is {}", i, i * i);

}

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 11 / 41

loop loops
In addition, we also have an unconditional loop construct:

loop {
println!("Hi again!");

}

This is more useful when using break

let prime = loop {
let p = gen_random_number();
if miller_rabin(p) {

break p;
}

};

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 12 / 41

loop loops
In addition, we also have an unconditional loop construct:

loop {
println!("Hi again!");

}

This is more useful when using break

let prime = loop {
let p = gen_random_number();
if miller_rabin(p) {

break p;
}

};

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 12 / 41

Outline
1 structs and enums

2 Control Flow

3 impl blocks

4 match expressions

5 Ownership

6 References/Borrowing

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 13 / 41

We can add associated functions and methods to a struct or enum we’ve defined by
using an impl block.

struct Rectangle {
width: u32,
height: u32,

}

impl Rectangle {
fn unit() -> Self {

Self { width: 1, height: 1 }
}

fn area(&self) -> u32 {
self.width * self.height

}
}

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 14 / 41

Invoking an associated function is done by qualifying it with the type

let unit_square = Rectangle::unit();

and methods are typically invoked using a dot:

let r = Rectangle { width: 4, height: 7 };
assert_eq!(unit_square.area(), 1);
assert_eq!(r.area(), 28);

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 15 / 41

Invoking an associated function is done by qualifying it with the type

let unit_square = Rectangle::unit();

and methods are typically invoked using a dot:

let r = Rectangle { width: 4, height: 7 };
assert_eq!(unit_square.area(), 1);
assert_eq!(r.area(), 28);

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 15 / 41

Outline
1 structs and enums

2 Control Flow

3 impl blocks

4 match expressions

5 Ownership

6 References/Borrowing

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 16 / 41

match expressions
What if we want to deal with many possible branching choices for an expression?

fn fib(n: u32) -> u32 {
match n {

0 | 1 => 0,
n => fib(n - 1) + fib(n - 2),

}
}

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 17 / 41

This is a bit more useful when dealing with enums

enum Coin { Penny, Nickel, Dime, Quarter }

impl Coin {
fn value(&self) -> u32 {

match self {
Coin::Penny => 1,
Coin::Nickel => 5,
Coin::Dime => 10,
Coin::Quarter => 25,

}
}

}

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 18 / 41

Most of all when the enum has data
enum Transmission {

Incoming(String)
Done,

}

fn listen(&mut p: Port) {
loop {

match p.receive() {
Transmission::Incoming(s) => {

println!(s);
}
Done => return,

}
}

}

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 19 / 41

Sometimes we can employ more specific pattern matching constructs to simplfy code.

enum Transmission {
Incoming(String)
Done,

}

fn listen(&mut p: Port) {
while let Transmission::Incoming(s) = p.receive() {

println!(s);
}

}

Likewise, there’s also if let. However, you’ll essentially always want to use match if
you have two or more things to do.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 20 / 41

Sometimes we can employ more specific pattern matching constructs to simplfy code.

enum Transmission {
Incoming(String)
Done,

}

fn listen(&mut p: Port) {
while let Transmission::Incoming(s) = p.receive() {

println!(s);
}

}

Likewise, there’s also if let. However, you’ll essentially always want to use match if
you have two or more things to do.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 20 / 41

Outline
1 structs and enums

2 Control Flow

3 impl blocks

4 match expressions

5 Ownership

6 References/Borrowing

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 21 / 41

Recall: Stack and Heap
Regions of memory you can store data in
Stack:

Local to current function invocation
Data ideally has known size at compile time (or a reasonable upper bound)
Automatically (logically) freed when function exits

Heap:

Persistent across function calls; not thread-local
Data can have unknown size
Some level of explicit memory management (gc, malloc/free, refcounting, dtors,
etc..)

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 22 / 41

Recall: Stack and Heap
Regions of memory you can store data in
Stack:

Local to current function invocation
Data ideally has known size at compile time (or a reasonable upper bound)
Automatically (logically) freed when function exits

Heap:

Persistent across function calls; not thread-local
Data can have unknown size
Some level of explicit memory management (gc, malloc/free, refcounting, dtors,
etc..)

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 22 / 41

Recall: Stack and Heap
Regions of memory you can store data in
Stack:

Local to current function invocation
Data ideally has known size at compile time (or a reasonable upper bound)
Automatically (logically) freed when function exits

Heap:
Persistent across function calls; not thread-local
Data can have unknown size
Some level of explicit memory management (gc, malloc/free, refcounting, dtors,
etc..)

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 22 / 41

Definitions
Value: The actual representation of some object
Variable: A name corresponding to that representation

// The variable x has a value of 98008
let x = 98008;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 23 / 41

More Definitions
Scope: A region of code where a variable is valid
Dropping: The process of running a value’s destructor

think: popping stack frame or calling free()

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 24 / 41

More Definitions
Scope: A region of code where a variable is valid
Dropping: The process of running a value’s destructor

think: popping stack frame or calling free()

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 24 / 41

Ownership Rules
Each value in Rust has a single variable called its owner.
There can only be one owner at a time.
When the owner exits its scope, the value will be dropped.
See also https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 25 / 41

https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html

Upcoming Ownership Examples
Simple Move
Move Into Function
Move Out of Function
Cloning

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 26 / 41

Ownership Example: Simple Move
let x = 5;
let y = x; // `x` can be copied efficiently, so the data is just
// copied into `y`
println!("{}", x); // This is OK

let s1 = String::from("hello");
let s2 = s1; // `s2` now "owns" the data that `s1` used to refer to
println!("{}", s1); // So this is an error

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 27 / 41

Ownership Example: Simple Move

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 28 / 41

Ownership Example: Move Into Function
fn makes_copy(x: i32) { println!("{}", x); }

fn take_ownership(x: String) { println!("{}", x); }

fn main() {
let x = 5;
makes_copy(x);
println!("{}", x);

let y = String::from("hello");
take_ownership(y);
println!("{}", y); // !

}

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 29 / 41

Ownership: Cloning

What if you have data that can’t be automatically copied, but you still want a
copy?
Solution: .clone() the data!

let s1 = String::from("hello");
let s2 = s1.clone(); // different and distinct from s1

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 30 / 41

Ownership: Cloning
What if you have data that can’t be automatically copied, but you still want a
copy?

Solution: .clone() the data!

let s1 = String::from("hello");
let s2 = s1.clone(); // different and distinct from s1

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 30 / 41

Ownership: Cloning
What if you have data that can’t be automatically copied, but you still want a
copy?
Solution: .clone() the data!

let s1 = String::from("hello");
let s2 = s1.clone(); // different and distinct from s1

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 30 / 41

Ownership: Cloning: Diagram

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 31 / 41

When Can I Copy Or Clone?
Copy: whenever a type implements the Copy trait!
Clone: whenever a type implements the Clone trait!
We’ll get into traits more next lecture
Important: the programmer implementing the struct decides if (and for Clone,
how) these operations are allowed

Restriction on Copy: every field/variant must be Copy
If something is Copy, it must also be Clone

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 32 / 41

Outline
1 structs and enums

2 Control Flow

3 impl blocks

4 match expressions

5 Ownership

6 References/Borrowing

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 33 / 41

Reference Pitfalls
In many other languages with references (e.g., C++) there are a number of potential
pitfalls:

int main() {
auto v = std::vector<int>{1, 2, 3, 4};
auto x = &v[1];
v.push_back(5);
*x = 0;
std::cout << v[1] << std::endl;
return 0;

}

What’s wrong?

By changing v, we invalidate the reference x!

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 34 / 41

Reference Pitfalls
In many other languages with references (e.g., C++) there are a number of potential
pitfalls:

int main() {
auto v = std::vector<int>{1, 2, 3, 4};
auto x = &v[1];
v.push_back(5);
*x = 0;
std::cout << v[1] << std::endl;
return 0;

}

What’s wrong?
By changing v, we invalidate the reference x!

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 34 / 41

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 35 / 41

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.

There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 35 / 41

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.

When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 35 / 41

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).

You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 35 / 41

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...

... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 35 / 41

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time ...
... but, you can only have one exclusive borrow (&mut), and not at the same time
as any shared borrow.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 35 / 41

References: Pointers But Better

Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”

Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 36 / 41

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 36 / 41

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”

Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 36 / 41

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)

Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 36 / 41

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 36 / 41

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable (more accurately: “shared” and “exclusive”)
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 36 / 41

Immutable References
&Ty

Only let you read
Any number can exist at one point, so long as there’s no mutable references to
the object at the same time.

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 37 / 41

Immutable References: Example
let x: i32 = 5;
let x_ref: &i32 = &x;

// Ok to have more than one immutable ref
let x_ref2: &i32 = &x;

// Immutable reference is Copy
let x_ref3: &i32 = x_ref;

// Ok, i32 is Copy---can "move out of" reference to one
let y: i32 = *x_ref;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 38 / 41

Mutable References
&mut Ty

Let you read and write
Can only be made if the underlying object is also mutable
Only one can exist at a time

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 39 / 41

Mutable References: Example
let x: i32 = 5;

// Error: x isn't mut
let x_mut_ref: &mut i32 = &mut x;

let mut y: i32 = 6;
let y_mut_ref: &mut i32 = &mut y;

// Error: y_mut_ref
let y_mut_ref2: &mut i32 = &mut y;

// Error: mut ref isn't Copy
let y_mut_ref3: &mut i32 = y_mut_ref;
*y_mut_ref += 2;

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 40 / 41

Tomorrow
Function types
Closures
More advanced ownership semantics

Cooper Pierce & Jack Duvall More Syntax and Borrowing 7th September 2022 41 / 41

	structs and enums
	Control Flow
	impl blocks
	match expressions
	Ownership
	References/Borrowing

