
Rust’s Standard Library

Cooper Pierce & Jack Duvall

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 1 / 63

Arrays: [T; N]
Recall that we have statically fixed-size array types in Rust, written [T; N].

let x: [i32; 5] = [0, 1, 2, 3, 4];
// Note: for [x; N], with x: T, we require T: Copy!
let y = [0; 100];

let s = [String::from("foo"), String::from("bar")];

and we can use “slice patterns” with them:

let [x, y, z] = [1, 2, 3];
let [a, b] = ["A", "B"];

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 2 / 63

Arrays: [T; N]
Recall that we have statically fixed-size array types in Rust, written [T; N].

let x: [i32; 5] = [0, 1, 2, 3, 4];
// Note: for [x; N], with x: T, we require T: Copy!
let y = [0; 100];

let s = [String::from("foo"), String::from("bar")];

and we can use “slice patterns” with them:

let [x, y, z] = [1, 2, 3];
let [a, b] = ["A", "B"];

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 2 / 63

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 3 / 63

https://doc.rust-lang.org/std/vec/struct.Vec.html

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 3 / 63

https://doc.rust-lang.org/std/vec/struct.Vec.html

Vec<T>
... but this is pretty restrictive. What if I want a dynamically sized array?

// We can construct these like arrays, with the vec! macro
let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);
x.push(6);
assert_eq!(x.len(), 7);
assert!(match x.pop() { Some(6) => true, _ => false });

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 3 / 63

https://doc.rust-lang.org/std/vec/struct.Vec.html

Some useful functions for Vec<T>:

// Creation
fn new() -> Vec<T>;
fn with_capacity(capacity: usize) -> Vec<T>;

// Modification
fn push(&mut self, value: T);
fn pop(&mut self) -> Option<T>;

fn insert(&mut self, index: usize, element: T);
fn remove(&mut self, index: usize) -> T;

// Metadata
fn len(&self) -> usize;
fn is_empty(&self) -> bool;

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 4 / 63

Vec<T>: Representation

|len |
| |
2
capacity
4

ptr
*------------->

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 5 / 63

https://doc.rust-lang.org/std/vec/struct.Vec.html

VecDeque<T>
What if we want efficent access to both the front and back of our Vec<T> for both
reading/writing?

let x = vec![1, 2, 3, 4];
x.remove(0);
x.insert(0, 5);

We can use a VecDeque<T> instead!

let x = VecDeque::from([1, 2, 3, 4]);
x.pop_front();
x.push_front(5);

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 6 / 63

https://doc.rust-lang.org/std/collections/vec_deque/struct.VecDeque.html

VecDeque<T>
What if we want efficent access to both the front and back of our Vec<T> for both
reading/writing?

let x = vec![1, 2, 3, 4];
x.remove(0);
x.insert(0, 5);

We can use a VecDeque<T> instead!

let x = VecDeque::from([1, 2, 3, 4]);
x.pop_front();
x.push_front(5);

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 6 / 63

https://doc.rust-lang.org/std/collections/vec_deque/struct.VecDeque.html

Some useful functions for VecDeque<T>:

// Creation
fn new() -> Vec<T>;
fn with_capacity(capacity: usize) -> Vec<T>;

// Modification
fn push_front / push_back(&mut self, value: T);
fn pop_front / pop_back(&mut self) -> Option<T>;

// We'll come back to this one
fn make_contiguous(&mut self) -> &mut [T];

// Metadata
fn len(&self) -> usize;
fn is_empty(&self) -> bool;

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 7 / 63

Slices: [T], &[T] and &mut [T]
Recall that [T] is a unsized/dynamically-sized view into a continugous sequence of
element type T.
Because we can view many ways of collecting data this way, we can simply define a lot
of useful algorithms on this type:

fn len(&self) -> usize;

// Searching & sorting
fn binary_search<T: Ord>(&self, x: &T) -> Result<usize, usize>;
fn sort<T: Ord>(&mut self);
fn sort_unstable<T: Ord>(&mut self);

// Sliding window
fn windows(&self, size: usize) -> impl Iterator<Item = &[T]>;

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 8 / 63

https://doc.rust-lang.org/std/primitive.slice.html

Slices: Representation
___________ _______________
len		len	ptr	
		2	*	
3		_______	___	___

capacity				
	.----------'			
4				

ptr	_________v_____________________			
*------------->	2	3	5	X
___________		_______	_______	_______

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 9 / 63

HashMap and BTreeMap
We might also want to be able to efficently look up data given a key, and we have two
main way of doing this in the standard library:

HashMap
BTreeMap

which each have different trait bounds for the keys.

For HashMap<K, V>, we (essentially) require that &K: Hash + Eq.
For BTreeMap<K, V>, we (essentially) require that &K: Ord and K: Ord.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 10 / 63

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

HashMap and BTreeMap
We might also want to be able to efficently look up data given a key, and we have two
main way of doing this in the standard library:

HashMap
BTreeMap

which each have different trait bounds for the keys.

For HashMap<K, V>, we (essentially) require that &K: Hash + Eq.
For BTreeMap<K, V>, we (essentially) require that &K: Ord and K: Ord.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 10 / 63

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

The most relevant functions are:

fn new() -> HashMap<K, V> / BTreeMap<K, V>;

fn insert(&mut self, key: K, value: V) -> Option<V>;
// Basically, K: Borrow<Q> means that &K can be viewed as &Q
fn get<Q, K: Borrow<Q>>(&self, k: &Q) -> Option<&V>
fn remove<Q, K: Borrow<Q>>(&mut self, key: &Q) -> Option<V>;

fn keys(&self) -> impl Iterator<Item = &K>;
fn values(&self) -> impl Iterator<Item = &K>;

fn entry(&mut self, key: K) -> Entry<'_, K, V>;

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 11 / 63

Entry
Let’s take a look at that Entry<'a, K, V> type which popped up in our maps’
interface.

pub enum Entry<'a, K: 'a, V: 'a> {
Occupied(OccupiedEntry<'a, K, V>),
Vacant(VacantEntry<'a, K, V>),

}

and some relevant functions:

fn and_modify(self, f: impl FnOnce(&mut V)) -> Self;
fn or_insert(self, default: V) -> &'a mut V;

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 12 / 63

https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

Using an Entry
let mut map: HashMap<&str, u32> = HashMap::new();

map.entry("my_entry")
.and_modify(|e| { *e += 1 })
.or_insert(42);

assert!(match map.get("my_entry") { Some(42) => true, _ => false });

map.entry("my_entry")
.and_modify(|e| { *e += 1 })
.or_insert(42);

assert!(match map.get("my_entry") { Some(43) => true, _ => false });

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 13 / 63

https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 14 / 63

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?

integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 15 / 63

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),

bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 15 / 63

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,

Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 15 / 63

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,

function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 15 / 63

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,

&T for all T
What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 15 / 63

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 15 / 63

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

}

What are some types which implement this?
integer types (e.g., i32, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

What about &mut T for all T?
Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 15 / 63

https://doc.rust-lang.org/std/clone/trait.Clone.html

Copy
Let’s look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this?

We say that Copy is a “marker trait” because it doesn’t
require anything specific to be implemented—it just “marks” the type as having some
property.

// Recall that i32: Copy
let x = 7;
let y = x;
let z = x + y; // Okay, because x was copied, not moved!

println!("{} = {} + {}", z, x, y);

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 16 / 63

https://doc.rust-lang.org/std/marker/trait.Copy.html

Copy
Let’s look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this? We say that Copy is a “marker trait” because it doesn’t
require anything specific to be implemented—it just “marks” the type as having some
property.

// Recall that i32: Copy
let x = 7;
let y = x;
let z = x + y; // Okay, because x was copied, not moved!

println!("{} = {} + {}", z, x, y);

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 16 / 63

https://doc.rust-lang.org/std/marker/trait.Copy.html

Copy
Let’s look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this? We say that Copy is a “marker trait” because it doesn’t
require anything specific to be implemented—it just “marks” the type as having some
property.

// Recall that i32: Copy
let x = 7;
let y = x;
let z = x + y; // Okay, because x was copied, not moved!

println!("{} = {} + {}", z, x, y);

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 16 / 63

https://doc.rust-lang.org/std/marker/trait.Copy.html

Deriving Copy and Clone
Both Copy and Clone can be derived:

#[derive(Copy, Clone)]
struct Rational(bool, u32, u32);

#[derive(Clone)]
struct Student {

andrewid: [u8; 8],
name: String,

}

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 17 / 63

Deriving Copy and Clone
Both Copy and Clone can be derived:

#[derive(Copy, Clone)]
struct Rational(bool, u32, u32);

#[derive(Clone)]
struct Student {

andrewid: [u8; 8],
name: String,

}

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 17 / 63

PartialEq
In addition to making copies of values we have, another useful thing is to be able to
see if we have two values which are the same:

pub trait PartialEq<Rhs = Self> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

}

A type can implement PartialEq for any partial equvialence relation: it needs to be
symmetric and transitive, but not reflexive.
What might be a type which implements PartialEq, but not Eq?

One notable example is floating point types like f32 and f64, because NaN != NaN.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 18 / 63

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://en.wikipedia.org/wiki/Partial_equivalence_relation

PartialEq
In addition to making copies of values we have, another useful thing is to be able to
see if we have two values which are the same:

pub trait PartialEq<Rhs = Self> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

}

A type can implement PartialEq for any partial equvialence relation: it needs to be
symmetric and transitive, but not reflexive.
What might be a type which implements PartialEq, but not Eq?

One notable example is floating point types like f32 and f64, because NaN != NaN.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 18 / 63

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://en.wikipedia.org/wiki/Partial_equivalence_relation

Eq
So like I’ve spoiled already, we have another trait for equivalence relations:

pub trait Eq: PartialEq<Self> { }

We can derive both this and PartialEq, which will just check all our fields pairwise, or
we can implement a custom version where we can check whatever properties matter to
us for equality

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 19 / 63

https://doc.rust-lang.org/std/cmp/trait.Eq.html

Implementing Eq
struct Class {

dept: u8,
number: u8,
cross_listed: HashSet<(u8, u8)>,

}

impl PartialEq for Class {
fn eq(&self, other: &Self) -> bool {

(self.dept == other.dept && self.number == other.number)
|| self.cross_listed.contains(&(other.dept, other.number))

}
}

impl Eq for Class { }

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 20 / 63

PartialOrd
We likewise have a trait for strict preorders on a subset of our type
pub trait PartialOrd<Rhs = Self>: PartialEq<Rhs> {

fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;

fn lt(&self, other: &Rhs) -> bool { ... }
fn le(&self, other: &Rhs) -> bool { ... }
fn gt(&self, other: &Rhs) -> bool { ... }
fn ge(&self, other: &Rhs) -> bool { ... }

}

enum Ordering {
Less,
Equal,
Greater,

}

For this, we just need transitivity and duality (a < b iff b < a).
Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 21 / 63

https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html

Ord
There’s also a corresponding version for when we can define the order over all the
value for our type:

pub trait Ord: Eq + PartialOrd<Self> {
fn cmp(&self, other: &Self) -> Ordering;
fn max(self, other: Self) -> Self { ... }
fn min(self, other: Self) -> Self { ... }
fn clamp(self, min: Self, max: Self) -> Self { ... }

}

Here we can also see the value of being able to provide default implementations of
functions—the ones here are actually pretty useful!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 22 / 63

https://doc.rust-lang.org/std/cmp/trait.Ord.html

Debug
Oftentimes we might want a quick and easy way to print out a type for debugging—we
can do this with the "{:?}" format specifier, and it’ll use the Debug implementation.
pub trait Debug {

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}

Normally, we’ll just derive this on everything and it’ll help us out when we’re
debugging.

#[derive(Debug)]
struct Point {

x: i32,
y: i32

}

assert_eq!(
format!("{:?}", Point { x: 7, y: 12 }),
"Point { x: 7, y: 12 }"

);

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 23 / 63

https://doc.rust-lang.org/std/fmt/trait.Debug.html

Display
The definition of Display is the exact same as for Debug:

pub trait Display {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;

}

except this is what’s used for the "{}", the default/empty format specifier.
Because Display is intended for formatting user-facing output, we can’t derive it, and
instead would implement it ourselves to dispay our data in a human-friendly way.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 24 / 63

https://doc.rust-lang.org/std/fmt/trait.Display.html

From
Another common situation is wanting to be able to convert a value of one type to
another:

pub trait From<T> {
fn from(T) -> Self;

}

There’s also a falliable version of this in TryFrom.
A common use for this, that we’ve already seen, is converting &'static str to
String—more on strings soon.

let s = String::from("Hello, world!");
let k: String = "Hello, world!".into();

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 25 / 63

https://doc.rust-lang.org/std/convert/trait.From.html

Into
Into essentially provides the reciprocol of From:

pub trait Into<T> {
fn into(self) -> T;

}

Generally you want to implement From, because if T implements From<U>, then
Into<T> is automatically implemented for U. This is because there’s a blanket
implementation for Into that looks like this:

impl<T, U: From<T>> Into<U> for T {
fn into(self) -> U {

U::from(self)
}

}

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 26 / 63

https://doc.rust-lang.org/std/convert/trait.Into.html

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 27 / 63

Iterator
There’s another major trait we haven’t talked about in-depth yet, Iterator. To see
how useful this might be, let’s take a look at it’s items.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 28 / 63

https://doc.rust-lang.org/std/iter/trait.Iterator.html

pub trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

fn size_hint(&self) -> (usize, Option<usize>) { ... }
fn count(self) -> usize { ... }
fn last(self) -> Option<Self::Item> { ... }
fn advance_by(&mut self, n: usize) -> Result<(), usize> { ... }
fn nth(&mut self, n: usize) -> Option<Self::Item> { ... }
fn step_by(self, step: usize) -> StepBy<Self> { ... }
fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter>
where

U: IntoIterator<Item = Self::Item>,
{ ... }
fn zip<U>(self, other: U)

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 29 / 63

-> Zip<Self, <U as IntoIterator>::IntoIter>
where

U: IntoIterator,
{ ... }
fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
where

Self::Item: Clone,
{ ... }
fn intersperse_with<G>(self, separator: G)

-> IntersperseWith<Self, G>
where

G: FnMut() -> Self::Item,
{ ... }
fn map<B, F>(self, f: F) -> Map<Self, F>
where

F: FnMut(Self::Item) -> B,

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 30 / 63

{ ... }
fn for_each<F>(self, f: F)
where

F: FnMut(Self::Item),
{ ... }
fn filter<P>(self, predicate: P) -> Filter<Self, P>
where

P: FnMut(&Self::Item) -> bool,
{ ... }
fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
where

F: FnMut(Self::Item) -> Option,
{ ... }
fn enumerate(self) -> Enumerate<Self> { ... }
fn peekable(self) -> Peekable<Self> { ... }
fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 31 / 63

where
P: FnMut(&Self::Item) -> bool,

{ ... }
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
where

P: FnMut(&Self::Item) -> bool,
{ ... }
fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
where

P: FnMut(Self::Item) -> Option,
{ ... }
fn skip(self, n: usize) -> Skip<Self> { ... }
fn take(self, n: usize) -> Take<Self> { ... }
fn scan<St, B, F>(self, initial_state: St, f: F)

-> Scan<Self, St, F>
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 32 / 63

F: FnMut(&mut St, Self::Item) -> Option,
{ ... }
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where

U: IntoIterator,
F: FnMut(Self::Item) -> U,

{ ... }
fn flatten(self) -> Flatten<Self>
where

Self::Item: IntoIterator,
{ ... }
fn fuse(self) -> Fuse<Self> { ... }
fn inspect<F>(self, f: F) -> Inspect<Self, F>
where

F: FnMut(&Self::Item),
{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 33 / 63

fn by_ref(&mut self) -> &mut Self { ... }
fn collect(self) -> B
where

B: FromIterator<Self::Item>,
{ ... }
fn partition<B, F>(self, f: F) -> (B, B)
where

B: Default + Extend<Self::Item>,
F: FnMut(&Self::Item) -> bool,

{ ... }
fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
where

T: 'a,
Self: DoubleEndedIterator<Item = &'a mut T>,
P: FnMut(&T) -> bool,

{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 34 / 63

fn is_partitioned<P>(self, predicate: P) -> bool
where

P: FnMut(Self::Item) -> bool,
{ ... }
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where

F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,

{ ... }
fn try_for_each<F, R>(&mut self, f: F) -> R
where

F: FnMut(Self::Item) -> R,
R: Try<Output = ()>,

{ ... }
fn fold<B, F>(self, init: B, f: F) -> B
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 35 / 63

F: FnMut(B, Self::Item) -> B,
{ ... }
fn reduce<F>(self, f: F) -> Option<Self::Item>
where

F: FnMut(Self::Item, Self::Item) -> Self::Item,
{ ... }
fn all<F>(&mut self, f: F) -> bool
where

F: FnMut(Self::Item) -> bool,
{ ... }
fn any<F>(&mut self, f: F) -> bool
where

F: FnMut(Self::Item) -> bool,
{ ... }
fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 36 / 63

P: FnMut(&Self::Item) -> bool,
{ ... }
fn find_map<B, F>(&mut self, f: F) -> Option
where

F: FnMut(Self::Item) -> Option,
{ ... }
fn try_find<F, R, E>(&mut self, f: F)

-> Result<Option<Self::Item>, E>
where

F: FnMut(&Self::Item) -> R,
R: Try<Output = bool, Residual = Result<Infallible, E>>

+ Try,
{ ... }
fn position<P>(&mut self, predicate: P) -> Option<usize>
where

P: FnMut(Self::Item) -> bool,

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 37 / 63

{ ... }
fn rposition<P>(&mut self, predicate: P) -> Option<usize>
where

P: FnMut(Self::Item) -> bool,
Self: ExactSizeIterator + DoubleEndedIterator,

{ ... }
fn max(self) -> Option<Self::Item>
where

Self::Item: Ord,
{ ... }
fn min(self) -> Option<Self::Item>
where

Self::Item: Ord,
{ ... }
fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 38 / 63

B: Ord,
F: FnMut(&Self::Item) -> B,

{ ... }
fn max_by<F>(self, compare: F) -> Option<Self::Item>
where

F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{ ... }
fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>
where

B: Ord,
F: FnMut(&Self::Item) -> B,

{ ... }
fn min_by<F>(self, compare: F) -> Option<Self::Item>
where

F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 39 / 63

fn rev(self) -> Rev<Self>
where

Self: DoubleEndedIterator,
{ ... }
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
where

FromA: Default + Extend<A>,
FromB: Default + Extend,
Self: Iterator<Item = (A, B)>,

{ ... }
fn copied<'a, T>(self) -> Copied<Self>
where

T: 'a + Copy,
Self: Iterator<Item = &'a T>,

{ ... }
fn cloned<'a, T>(self) -> Cloned<Self>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 40 / 63

where
T: 'a + Clone,
Self: Iterator<Item = &'a T>,

{ ... }
fn cycle(self) -> Cycle<Self>
where

Self: Clone,
{ ... }
fn sum<S>(self) -> S
where

S: Sum<Self::Item>,
{ ... }
fn product<P>(self) -> P
where

P: Product<Self::Item>,
{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 41 / 63

fn cmp<I>(self, other: I) -> Ordering
where

I: IntoIterator<Item = Self::Item>,
Self::Item: Ord,

{ ... }
fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
where

I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item)

-> Ordering,
{ ... }
fn partial_cmp<I>(self, other: I) -> Option<Ordering>
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 42 / 63

fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F)
-> Option<Ordering>

where
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item)

-> Option<Ordering>,
{ ... }
fn eq<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>,

{ ... }
fn eq_by<I, F>(self, other: I, eq: F) -> bool
where

I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool,

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 43 / 63

{ ... }
fn ne<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>,

{ ... }
fn lt<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }
fn le<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 44 / 63

fn gt<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }
fn ge<I>(self, other: I) -> bool
where

I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,

{ ... }
fn is_sorted(self) -> bool
where

Self::Item: PartialOrd<Self::Item>,
{ ... }
fn is_sorted_by<F>(self, compare: F) -> bool
where

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 45 / 63

F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
{ ... }
fn is_sorted_by_key<F, K>(self, f: F) -> bool
where

F: FnMut(Self::Item) -> K,
K: PartialOrd<K>,

{ ... }
}

.. a lot of stuff!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 46 / 63

Ones you probably care about
trait Iterator {

type Item;
fn next(&mut self) -> Option<Self::Item>;
fn map(self, f: impl FnMut(Self::Item) -> B)

-> impl Iterator<Item = B>
{ ... }
fn filter(self, predicate: impl FnMut(&Self::Item) -> bool)

-> impl Iterator<Item = Self::Item>
{ ... }
fn flatten(self) -> Flatten<Self>
where

Self::Item: IntoIterator,
{ ... }

}

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 47 / 63

IntoIterator
pub trait IntoIterator {

type Item;
type IntoIter: Iterator<Item = Self::Item>;
fn into_iter(self) -> Self::IntoIter;

}

What is a for loop anyway?
https://doc.rust-lang.org/std/iter/index.html#for-loops-and-intoiterator

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 48 / 63

https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/index.html#for-loops-and-intoiterator

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 49 / 63

How Rust Represents Strings

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 50 / 63

How Rust Represents Strings

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 50 / 63

Problems with char*

May not have a null terminator
May not point to string data
May not point to string data with the right encoding

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 51 / 63

Problems with char*
May not have a null terminator

May not point to string data
May not point to string data with the right encoding

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 51 / 63

Problems with char*
May not have a null terminator
May not point to string data

May not point to string data with the right encoding

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 51 / 63

Problems with char*
May not have a null terminator
May not point to string data
May not point to string data with the right encoding

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 51 / 63

&str

UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 52 / 63

&str
UTF-8 encoding

“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 52 / 63

&str
UTF-8 encoding
“Fat pointer” with data + length (like a slice)

Not necessarily null terminated
All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 52 / 63

&str
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 52 / 63

&str
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

All string constants like "Hello, World!" have type &'static str

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 52 / 63

String

UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 53 / 63

String
UTF-8 encoding

“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 53 / 63

String
UTF-8 encoding
“Fat pointer” with data + length (like a slice)

Not necessarily null terminated
Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 53 / 63

String
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 53 / 63

String
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec.

This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 53 / 63

String
UTF-8 encoding
“Fat pointer” with data + length (like a slice)
Not necessarily null terminated

Difference from &str: String is “owned”, stored on the heap! Dynamically resizable,
like Vec. This means we can mutate it too (when we have a mutable reference)

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 53 / 63

String types for FFI

CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses same encoding as OS.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 54 / 63

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.

&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses same encoding as OS.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 54 / 63

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.

OSString: Rust-owned string, no interior nulls, uses same encoding as OS.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 54 / 63

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses same encoding as OS.

&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 54 / 63

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

String types for FFI
CString: Rust-owned string with no interior null bytes, null terminated. UTF-8
encoded.
&CStr: Borrowed version of the above, may be C-owned. May not be UTF-8
encoded, checked when converting to &str.
OSString: Rust-owned string, no interior nulls, uses same encoding as OS.
&OSStr: Borrowed version of the above. Both are pointer + length, not aware of
null terminators.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 54 / 63

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T
String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 55 / 63

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T
String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 55 / 63

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T
String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 55 / 63

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T

String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 55 / 63

“Wait, how can borrowing a String give you a &str?”

pub trait Deref {
type Target: ?Sized;
fn deref(&self) -> &Self::Target;

}

*v gets desugared to Deref::deref(v) when v: &T
String: Deref<Target=str>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 55 / 63

Rust has Type Coercion! Done when desired type is explicitly labeled (somewhere),
and casting would be lossless:

let x: i8 = 42;
fn foo(x: i8) {}
foo(42);

Deref coercion is a subset of type coercion: &T or &mut T can be coerced to &U if
T: Deref<Target=U>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 56 / 63

Rust has Type Coercion! Done when desired type is explicitly labeled (somewhere),
and casting would be lossless:

let x: i8 = 42;
fn foo(x: i8) {}
foo(42);

Deref coercion is a subset of type coercion: &T or &mut T can be coerced to &U if
T: Deref<Target=U>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 56 / 63

Rust has Type Coercion! Done when desired type is explicitly labeled (somewhere),
and casting would be lossless:

let x: i8 = 42;
fn foo(x: i8) {}
foo(42);

Deref coercion is a subset of type coercion: &T or &mut T can be coerced to &U if
T: Deref<Target=U>

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 56 / 63

Outline

1 Common Data Structures

2 Common Traits

3 Iterator

4 Strings

5 Smart Pointers and Cells

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 57 / 63

Box<T>
A Box<T> is just a (non-null!) pointer which owns a value of type T.

let x = Box::new(7);
assert_eq!(*x, 7);
*x += 10;
assert_eq!(*x, 17);

This ends up being very useful when defining a recursive struct or enum.

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 58 / 63

https://doc.rust-lang.org/std/boxed/struct.Box.html

Some relevant functions for working with Box<T>:

fn new(x: T) -> Box<T>;
fn leak<'a>(b: Box<T>) -> &'a mut T;

// From traits
fn as_mut(&self) -> &mut T;
fn as_ref(&self) -> &T;

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 59 / 63

Box<T>: Representation
----- ___
ptr		
*---------->	7	
_____		___

If we’re using an Option<Box<T>> we can perform a null pointer optimisation, where
None is represented as

|ptr | .
| *----||
|_____| '

So we can avoid storing an extra byte to know if we’re None or Some(v).

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 60 / 63

Box<T>: Representation
----- ___
ptr		
*---------->	7	
_____		___

If we’re using an Option<Box<T>> we can perform a null pointer optimisation, where
None is represented as

|ptr | .
| *----||
|_____| '

So we can avoid storing an extra byte to know if we’re None or Some(v).
Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 60 / 63

Rc<T>
Where we can only have one owner of a Box<T>, and all ownership is enforced
statically, we can instead used reference counting to push some of this to runtime (for
a little cost).

let mut x = Rc::new(3);
if let Some(v) = Rc::get_mut(&mut x) {

*v = 4;
} else {

// Unreachable here
panic!("Didn't get a mutable reference!");

}
assert_eq!(*x, 4);

let _y = Rc::clone(&x);
assert!(Rc::get_mut(&mut x).is_none());

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 61 / 63

https://doc.rust-lang.org/std/boxed/struct.Box.html

Relevant functions for Rc<T>.

fn new(value: T) -> Rc<T>;
fn get_mut(this: &mut Rc<T>) -> Option<&mut T>;
fn make_mut<T: Clone>(this: &mut Rc<T>) -> &mut T;

// From traits--but important! Points to same allocation.
fn clone(&self) -> Rc<T>;

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 62 / 63

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell

replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.

RefCell

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 63 / 63

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell

replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.

RefCell

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 63 / 63

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell

replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.
RefCell

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 63 / 63

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.

RefCell

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 63 / 63

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.

RefCell

borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference
UnsafeCell

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 63 / 63

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.

RefCell
borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 63 / 63

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.

RefCell
borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell

get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 63 / 63

Cells
Cells are a way to provide ”interior mutability” (being able to mutate data only given a
immutable reference) in a safe-ish way

Cell
replace(&self, val: T) -> T: value is mutated by moving in/out of the cell.

RefCell
borrow_mut(&self) -> RefMut<'_, T>: get a runtime-checked mutable reference

UnsafeCell
get(&self) -> *mut T: get a non-checked mutable pointer. Very tricky to use!

Cooper Pierce & Jack Duvall Rust’s Standard Library 8th October 2022 63 / 63

	Common Data Structures
	Common Traits
	Iterator
	Strings
	Smart Pointers and Cells

