
Macros

Cooper Pierce

Table of Contents

1 Why Macros?

2 Tokens and Syntax

3 Rust Macros
Declarative Macros
Procedular Macros

Cooper Pierce Macros 14th April 2022 1 / 27

Macros in Other Languages
What are some other languages with macros?

C
C++
Lisp
Prolog (SWI)
Julia
Nim
Elixir

What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

Macros in Other Languages
What are some other languages with macros?

C

C++
Lisp
Prolog (SWI)
Julia
Nim
Elixir

What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

Macros in Other Languages
What are some other languages with macros?

C
C++

Lisp
Prolog (SWI)
Julia
Nim
Elixir

What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

Macros in Other Languages
What are some other languages with macros?

C
C++
Lisp

Prolog (SWI)
Julia
Nim
Elixir

What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

Macros in Other Languages
What are some other languages with macros?

C
C++
Lisp
Prolog (SWI)

Julia
Nim
Elixir

What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

Macros in Other Languages
What are some other languages with macros?

C
C++
Lisp
Prolog (SWI)
Julia

Nim
Elixir

What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

Macros in Other Languages
What are some other languages with macros?

C
C++
Lisp
Prolog (SWI)
Julia
Nim

Elixir
What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

Macros in Other Languages
What are some other languages with macros?

C
C++
Lisp
Prolog (SWI)
Julia
Nim
Elixir

What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

Macros in Other Languages
What are some other languages with macros?

C
C++
Lisp
Prolog (SWI)
Julia
Nim
Elixir

What are the uses of macros?

Cooper Pierce Macros 14th April 2022 2 / 27

C(++) Macros
There are a couple uses here:

constant expressions
boilerplate reduction
custom iteration
“polymorphism”
in variadic functions

... but this system is a bit unwieldy

Cooper Pierce Macros 14th April 2022 3 / 27

C(++) Macros
There are a couple uses here:

constant expressions

boilerplate reduction
custom iteration
“polymorphism”
in variadic functions

... but this system is a bit unwieldy

Cooper Pierce Macros 14th April 2022 3 / 27

C(++) Macros
There are a couple uses here:

constant expressions
boilerplate reduction

custom iteration
“polymorphism”
in variadic functions

... but this system is a bit unwieldy

Cooper Pierce Macros 14th April 2022 3 / 27

C(++) Macros
There are a couple uses here:

constant expressions
boilerplate reduction
custom iteration

“polymorphism”
in variadic functions

... but this system is a bit unwieldy

Cooper Pierce Macros 14th April 2022 3 / 27

C(++) Macros
There are a couple uses here:

constant expressions
boilerplate reduction
custom iteration
“polymorphism”

in variadic functions
... but this system is a bit unwieldy

Cooper Pierce Macros 14th April 2022 3 / 27

C(++) Macros
There are a couple uses here:

constant expressions
boilerplate reduction
custom iteration
“polymorphism”
in variadic functions

... but this system is a bit unwieldy

Cooper Pierce Macros 14th April 2022 3 / 27

C(++) Macros
There are a couple uses here:

constant expressions
boilerplate reduction
custom iteration
“polymorphism”
in variadic functions

... but this system is a bit unwieldy

Cooper Pierce Macros 14th April 2022 3 / 27

Real C Code, Written by Real C Programmers
LOCAL VOID gsort(from,to)

STRING from[], to[];
{

INT k, m, n;
REG INT i, j;

IF (n=to-from)<=1 THEN return FI

FOR j=1; j<=n; j*=2 DONE

FOR m=2*j-1; m/=2;
DO k=n-m;

FOR j=0; j=0; i-=m
DO REG STRING *fromi; fromi = &from[i];

IF cf(fromi[m],fromi[0])>0
THEN break;
ELSE STRING s; s=fromi[m]; fromi[m]=fromi[0]; fromi[0]=s;
FI

OD
OD

OD
}

Cooper Pierce Macros 14th April 2022 4 / 27

Pitfalls
There are a lot of issues:

macros don’t have to produce valid code
replacements might be contextually wrong
processing happens by a separate program, prior to the compiler

#define TWO 1 + 1

int main() {
printf("%d\n", 2 * TWO);
return 0;

}

Cooper Pierce Macros 14th April 2022 5 / 27

Pitfalls
There are a lot of issues:

macros don’t have to produce valid code

replacements might be contextually wrong
processing happens by a separate program, prior to the compiler

#define TWO 1 + 1

int main() {
printf("%d\n", 2 * TWO);
return 0;

}

Cooper Pierce Macros 14th April 2022 5 / 27

Pitfalls
There are a lot of issues:

macros don’t have to produce valid code
replacements might be contextually wrong

processing happens by a separate program, prior to the compiler

#define TWO 1 + 1

int main() {
printf("%d\n", 2 * TWO);
return 0;

}

Cooper Pierce Macros 14th April 2022 5 / 27

Pitfalls
There are a lot of issues:

macros don’t have to produce valid code
replacements might be contextually wrong
processing happens by a separate program, prior to the compiler

#define TWO 1 + 1

int main() {
printf("%d\n", 2 * TWO);
return 0;

}

Cooper Pierce Macros 14th April 2022 5 / 27

Pitfalls
There are a lot of issues:

macros don’t have to produce valid code
replacements might be contextually wrong
processing happens by a separate program, prior to the compiler

#define TWO 1 + 1

int main() {
printf("%d\n", 2 * TWO);
return 0;

}

Cooper Pierce Macros 14th April 2022 5 / 27

Table of Contents

1 Why Macros?

2 Tokens and Syntax

3 Rust Macros
Declarative Macros
Procedular Macros

Cooper Pierce Macros 14th April 2022 6 / 27

Lexing
One of the first steps a compiler has to do is to transform the input source:

fn main() {
let x = 7;

}

into a list of tokens:

FN IDENT LPAREN RPAREN LCURLY LET IDENT EQ INT_LIT SEMICOLON RCURLY

Cooper Pierce Macros 14th April 2022 7 / 27

Lexing
One of the first steps a compiler has to do is to transform the input source:

fn main() {
let x = 7;

}

into a list of tokens:

FN IDENT LPAREN RPAREN LCURLY LET IDENT EQ INT_LIT SEMICOLON RCURLY

Cooper Pierce Macros 14th April 2022 7 / 27

Syntax Trees
Once we have a list of tokens:

FN IDENT LPAREN RPAREN LCURLY LET IDENT EQ INT_LIT SEMICOLON RCURLY

we’ll want to turn this into something more structured, essentially a tree:

FN_DEF

FN

IDENT

LET
PAT IDENT

EXPR INT_LIT

This is an abstract syntax tree (AST).

Cooper Pierce Macros 14th April 2022 8 / 27

Syntax Trees
Once we have a list of tokens:

FN IDENT LPAREN RPAREN LCURLY LET IDENT EQ INT_LIT SEMICOLON RCURLY

we’ll want to turn this into something more structured, essentially a tree:

FN_DEF

FN

IDENT

LET
PAT IDENT

EXPR INT_LIT

This is an abstract syntax tree (AST).

Cooper Pierce Macros 14th April 2022 8 / 27

Token Trees
This isn’t the only way to parse tokens into trees though!

1 + 2 + (a[foo()] + 3)

1 + 2 +

()

a []

foo ()

3

Rust macros will primarily operate on token trees, but we also need to be aware of the
AST.

Cooper Pierce Macros 14th April 2022 9 / 27

Table of Contents

1 Why Macros?

2 Tokens and Syntax

3 Rust Macros
Declarative Macros
Procedular Macros

Cooper Pierce Macros 14th April 2022 10 / 27

Types of Macros
Broadly speaking there are 3 (or 4) different syntaxes for using macros in Rust:

Function-like, e.g., vec![1, 2, 3].
Outer attributes, e.g., #[derive(Clone)], #[cfg(test)].
Inner attributes, e.g., #![warn(rust_2018_idioms)].

Why (or 4)? There’s a special internal syntax-extension syntax we’ll see later, but it’s
currently only used by some compiler built-ins (macro_rules!).

Cooper Pierce Macros 14th April 2022 11 / 27

Types of Macros
Broadly speaking there are 3 (or 4) different syntaxes for using macros in Rust:

Function-like, e.g., vec![1, 2, 3].

Outer attributes, e.g., #[derive(Clone)], #[cfg(test)].
Inner attributes, e.g., #![warn(rust_2018_idioms)].

Why (or 4)? There’s a special internal syntax-extension syntax we’ll see later, but it’s
currently only used by some compiler built-ins (macro_rules!).

Cooper Pierce Macros 14th April 2022 11 / 27

Types of Macros
Broadly speaking there are 3 (or 4) different syntaxes for using macros in Rust:

Function-like, e.g., vec![1, 2, 3].
Outer attributes, e.g., #[derive(Clone)], #[cfg(test)].

Inner attributes, e.g., #![warn(rust_2018_idioms)].

Why (or 4)? There’s a special internal syntax-extension syntax we’ll see later, but it’s
currently only used by some compiler built-ins (macro_rules!).

Cooper Pierce Macros 14th April 2022 11 / 27

Types of Macros
Broadly speaking there are 3 (or 4) different syntaxes for using macros in Rust:

Function-like, e.g., vec![1, 2, 3].
Outer attributes, e.g., #[derive(Clone)], #[cfg(test)].
Inner attributes, e.g., #![warn(rust_2018_idioms)].

Why (or 4)? There’s a special internal syntax-extension syntax we’ll see later, but it’s
currently only used by some compiler built-ins (macro_rules!).

Cooper Pierce Macros 14th April 2022 11 / 27

Types of Macros
Broadly speaking there are 3 (or 4) different syntaxes for using macros in Rust:

Function-like, e.g., vec![1, 2, 3].
Outer attributes, e.g., #[derive(Clone)], #[cfg(test)].
Inner attributes, e.g., #![warn(rust_2018_idioms)].

Why (or 4)? There’s a special internal syntax-extension syntax we’ll see later, but it’s
currently only used by some compiler built-ins (macro_rules!).

Cooper Pierce Macros 14th April 2022 11 / 27

Rules for Macros
Like we said before, these operate on token trees. How does the compiler know what
token tree something like println! is going to operate on?

Function-like macros always operate on the immediately following token tree, which is
required to be a non-leaf. This means all of these are accepted:

print!("This is a test");
print![" of the emergency"];
print!{" broadcast system.\n"};

Cooper Pierce Macros 14th April 2022 12 / 27

Rules for Macros
Like we said before, these operate on token trees. How does the compiler know what
token tree something like println! is going to operate on?

Function-like macros always operate on the immediately following token tree, which is
required to be a non-leaf. This means all of these are accepted:

print!("This is a test");
print![" of the emergency"];
print!{" broadcast system.\n"};

Cooper Pierce Macros 14th April 2022 12 / 27

Rules for Macros
When expanding a macro, it expands to fill the corresponing place in the token tree.
Suppose we have a macro two! which expands to 1 + 1.
Then if we have something like:

println!("Two times two is {}", 2 * two!());

in Rust this will always become

println!("Two times two is {}", 2 * (1 + 1));

Note that we had to add parens, because it expands to fill the location in the token
tree, replacing the current AST node, instead of just spewing out tokens.

Cooper Pierce Macros 14th April 2022 13 / 27

Rules for Macros
When expanding a macro, it expands to fill the corresponing place in the token tree.
Suppose we have a macro two! which expands to 1 + 1.
Then if we have something like:

println!("Two times two is {}", 2 * two!());

in Rust this will always become

println!("Two times two is {}", 2 * (1 + 1));

Note that we had to add parens, because it expands to fill the location in the token
tree, replacing the current AST node, instead of just spewing out tokens.

Cooper Pierce Macros 14th April 2022 13 / 27

Why Use a Macro?
For the most part, there’s less use for macros in Rust than for instance, C or C++;
they’re also more restricted.
What might some uses be?

variadic operations
domain-specific languages
boilerplate code generation

Cooper Pierce Macros 14th April 2022 14 / 27

Why Use a Macro?
For the most part, there’s less use for macros in Rust than for instance, C or C++;
they’re also more restricted.
What might some uses be?

variadic operations

domain-specific languages
boilerplate code generation

Cooper Pierce Macros 14th April 2022 14 / 27

Why Use a Macro?
For the most part, there’s less use for macros in Rust than for instance, C or C++;
they’re also more restricted.
What might some uses be?

variadic operations
domain-specific languages

boilerplate code generation

Cooper Pierce Macros 14th April 2022 14 / 27

Why Use a Macro?
For the most part, there’s less use for macros in Rust than for instance, C or C++;
they’re also more restricted.
What might some uses be?

variadic operations
domain-specific languages
boilerplate code generation

Cooper Pierce Macros 14th April 2022 14 / 27

Why Use a Macro? Example: assert_eq!
Let’s take a look at assert_eq!. We’ve seen this before, with writing test cases.

#[test]
fn my_test_fn() {

assert_eq!(fib(6), 8);
}

Why might this be a macro instead of a function?

We can also use it like so:

#[test]
fn my_test_fn() {

assert_eq!(fib(6), 8, "Testing the 6th fibbonacci number");
}

Cooper Pierce Macros 14th April 2022 15 / 27

Why Use a Macro? Example: assert_eq!
Let’s take a look at assert_eq!. We’ve seen this before, with writing test cases.

#[test]
fn my_test_fn() {

assert_eq!(fib(6), 8);
}

Why might this be a macro instead of a function?

We can also use it like so:

#[test]
fn my_test_fn() {

assert_eq!(fib(6), 8, "Testing the 6th fibbonacci number");
}

Cooper Pierce Macros 14th April 2022 15 / 27

Defining a Declarative Macro
The first way to define macros, which we’ll call declarative macros, uses macro_rules!

macro_rules! assert_eq {
($left : expr, $right : expr $(,) ?) => { ... };
($left : expr, $right : expr, $($arg : tt) +) => { ... };

}

Some things to note:

The macro name
We introduce arguments with $name
and list the “types” of them
We also have some control over repeated constructs

Cooper Pierce Macros 14th April 2022 16 / 27

Defining a Declarative Macro
The first way to define macros, which we’ll call declarative macros, uses macro_rules!

macro_rules! assert_eq {
($left : expr, $right : expr $(,) ?) => { ... };
($left : expr, $right : expr, $($arg : tt) +) => { ... };

}

Some things to note:
The macro name

We introduce arguments with $name
and list the “types” of them
We also have some control over repeated constructs

Cooper Pierce Macros 14th April 2022 16 / 27

Defining a Declarative Macro
The first way to define macros, which we’ll call declarative macros, uses macro_rules!

macro_rules! assert_eq {
($left : expr, $right : expr $(,) ?) => { ... };
($left : expr, $right : expr, $($arg : tt) +) => { ... };

}

Some things to note:
The macro name
We introduce arguments with $name

and list the “types” of them
We also have some control over repeated constructs

Cooper Pierce Macros 14th April 2022 16 / 27

Defining a Declarative Macro
The first way to define macros, which we’ll call declarative macros, uses macro_rules!

macro_rules! assert_eq {
($left : expr, $right : expr $(,) ?) => { ... };
($left : expr, $right : expr, $($arg : tt) +) => { ... };

}

Some things to note:
The macro name
We introduce arguments with $name
and list the “types” of them

We also have some control over repeated constructs

Cooper Pierce Macros 14th April 2022 16 / 27

Defining a Declarative Macro
The first way to define macros, which we’ll call declarative macros, uses macro_rules!

macro_rules! assert_eq {
($left : expr, $right : expr $(,) ?) => { ... };
($left : expr, $right : expr, $($arg : tt) +) => { ... };

}

Some things to note:
The macro name
We introduce arguments with $name
and list the “types” of them
We also have some control over repeated constructs

Cooper Pierce Macros 14th April 2022 16 / 27

“Types” of Token Trees
block: a block (i.e. a block of statements and/or an expression, surrounded by
braces)
expr: an expression
ident: an identifier (this includes keywords)
item: an item, like a function, struct, module, impl, etc.
lifetime: a lifetime (e.g. 'foo, 'static, ...)
literal: a literal (e.g. "Hello World!", 3.14, 'X', ...)
meta: a meta item; the things that go inside the #[...] and #![...] attributes
pat: a pattern
path: a path (e.g. foo, ::std::mem::replace, transmute::<_, int>, ...)
stmt: a statement
tt: a single token tree
ty: a type
vis: a possible empty visibility qualifier (e.g. pub, pub(in crate), ...)

Cooper Pierce Macros 14th April 2022 17 / 27

Repetition Constructs
We can use the following sequence

$ (...) sep rep

where (...) is the group being repeated; sep is some token which separates the
groups (think something like ,); and rep is one of:

?—at most one (no sep)
+—at least one
*—any amount

You then would use this same syntax when dealing with the repeated group.

Cooper Pierce Macros 14th April 2022 18 / 27

Declarative Macro Example
Let’s define a simpler version of the vec! macro, which supports the syntax
vec![1, 2, 3, 4] (and allows a trailing comma).

macro_rules! vec {
($($x:expr) , * $ (,) ?) => {

{
let mut v = Vec::new();
$(

v.push($x);
)*

v
}

};

}

Cooper Pierce Macros 14th April 2022 19 / 27

Declarative Macro Example
Let’s define a simpler version of the vec! macro, which supports the syntax
vec![1, 2, 3, 4] (and allows a trailing comma).
macro_rules! vec {

($($x:expr) , * $ (,) ?) => {
{

let mut v = Vec::new();
$(

v.push($x);
)*

v
}

};

}
Cooper Pierce Macros 14th April 2022 19 / 27

While we can only defined a function-like macro with declarative macros, proc macros
allow us to also defined attributes.

Here, instead of writing something like a match expression, we’ll write a function which
operates on token trees.

However, proc macros are a little bit more cumbersome.

For instance,

[lib]
proc-macro = true

is required in your Cargo.toml, and they can’t be used in the same crate, because the
compiler needs to compile them.

Cooper Pierce Macros 14th April 2022 20 / 27

Defining a Procedular Macro
There are a couple different ways we define proc macros, depending on their use.
For function-like macros, it’ll take one argument, and have #[proc_macro]:
#[proc_macro]
pub fn my_proc_macro(input: TokenStream) -> TokenStream {

TokenStream::new()
}

For general attribute macros, it’ll take two arguments, one for attribute args and
another for the item itself, with #[proc_macro_attribute]:
#[proc_macro_attribute]
pub fn my_attribute(input: TokenStream, annotated_item: TokenStream)

-> TokenStream {
TokenStream::new()

}

Cooper Pierce Macros 14th April 2022 21 / 27

For derive macros, it’ll take two arguments, one for attribute args and another for the
item itself, with #[proc_macro_derive]:

#[proc_macro_derive(MyDerive)]
pub fn my_derive(annotated_item: TokenStream) -> TokenStream {

TokenStream::new()
}

Cooper Pierce Macros 14th April 2022 22 / 27

Proc Macros: Function-like Example
The simplest thing we could write for a function-like proc macro would just be the
identity macro:

#[proc_macro]
pub fn ident(x: TokenStream) -> TokenStream {

x
}

So if we used ident!(foo) it would just expand to foo.
We could implement much the same thing as our vec! macro, but we’d have to go
through the TokenStream and manually validate all of it—that’s a lot of work! In
general, if we can use a declarative macro we’ll want to, and if we can avoid a macro,
we’ll perfer that to both.

Cooper Pierce Macros 14th April 2022 23 / 27

Proc Macros: Derive
A more motiviating example is that of derive macros. We can imagine lots of cases
where we have trait we want to make easy to implement for clients of a library we’re
implementing, but the implementation is often rote, and just invovles recursing on the
fields of a struct.
Let’s imagine we have a trait Hello, defined like so:

trait Hello {
fn hello() -> String;

}

Cooper Pierce Macros 14th April 2022 24 / 27

use proc_macro::TokenStream;
use quote::quote;
use syn;

#[proc_macro_derive(Hello)]
pub fn hello_macro_derive(input: TokenStream) -> TokenStream {

// Construct a representation of Rust code as a syntax tree
// that we can manipulate
let ast = syn::parse(input).unwrap();

// Build the trait implementation
impl_hello_macro(&ast)

}

Cooper Pierce Macros 14th April 2022 25 / 27

fn impl_hello_macro(ast: &syn::DeriveInput) -> TokenStream {
let name = &ast.ident;
let gen = quote! {

impl HelloMacro for #name {
fn hello_macro() {

println!("Hello, Macro! My name is {}!",
stringify!(#name));

}
}

};
gen.into()

}

Cooper Pierce Macros 14th April 2022 26 / 27

So, we’ve already had to pull in two dependencies quote and syn, in order to
implement this, and that’s for a relative simple example.

This is somewhat constant overhead, but less than ideal.

Another factor is compile time—proc macros can lead to greatly expanded compilation
times, especially with quote and syn.

Cooper Pierce Macros 14th April 2022 27 / 27

So, we’ve already had to pull in two dependencies quote and syn, in order to
implement this, and that’s for a relative simple example.

This is somewhat constant overhead, but less than ideal.

Another factor is compile time—proc macros can lead to greatly expanded compilation
times, especially with quote and syn.

Cooper Pierce Macros 14th April 2022 27 / 27

	Why Macros?
	Tokens and Syntax
	Rust Macros
	Declarative Macros
	Procedular Macros

