
Concurrency & Parallelism 2
a little bit of fancy stuff

Jack Duvall

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Streams

5 Async Reactors

6 Backup
Making Async Code Sync
Async Traits

Jack Duvall Concurrency & Parallelism 2 16th November 2022 1 / 48

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Streams

5 Async Reactors

6 Backup
Making Async Code Sync
Async Traits

Jack Duvall Concurrency & Parallelism 2 16th November 2022 2 / 48

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 16th November 2022 3 / 48

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel

Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 16th November 2022 3 / 48

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 16th November 2022 3 / 48

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads

Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 16th November 2022 3 / 48

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)

Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 16th November 2022 3 / 48

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based

Coroutines

Jack Duvall Concurrency & Parallelism 2 16th November 2022 3 / 48

https://rust-lang.github.io/async-book/

What Is Async?
(some content taken from The Rust Async Book)
”Async implies Concurrent Programming”

Could be parallelized if you wanted to, but isn’t explicitly parallel
Models for concurrency:

OS Threads
Event driven (event loops and callbacks)
Actor based
Coroutines

Jack Duvall Concurrency & Parallelism 2 16th November 2022 3 / 48

https://rust-lang.github.io/async-book/

Drawbacks Of Threads/Multiprocessing

Threads/Processes are managed by the OS, expensive to spawn a bunch
Inter-Process Communication (IPC) very slow (for processes)
Significantly change structure of code

Building around race conditions in threads
Explicitly joining threads/processes

Still useful for many applications! Just different applicability

Jack Duvall Concurrency & Parallelism 2 16th November 2022 4 / 48

Drawbacks Of Threads/Multiprocessing
Threads/Processes are managed by the OS, expensive to spawn a bunch

Inter-Process Communication (IPC) very slow (for processes)
Significantly change structure of code

Building around race conditions in threads
Explicitly joining threads/processes

Still useful for many applications! Just different applicability

Jack Duvall Concurrency & Parallelism 2 16th November 2022 4 / 48

Drawbacks Of Threads/Multiprocessing
Threads/Processes are managed by the OS, expensive to spawn a bunch
Inter-Process Communication (IPC) very slow (for processes)

Significantly change structure of code

Building around race conditions in threads
Explicitly joining threads/processes

Still useful for many applications! Just different applicability

Jack Duvall Concurrency & Parallelism 2 16th November 2022 4 / 48

Drawbacks Of Threads/Multiprocessing
Threads/Processes are managed by the OS, expensive to spawn a bunch
Inter-Process Communication (IPC) very slow (for processes)
Significantly change structure of code

Building around race conditions in threads
Explicitly joining threads/processes

Still useful for many applications! Just different applicability

Jack Duvall Concurrency & Parallelism 2 16th November 2022 4 / 48

Drawbacks Of Threads/Multiprocessing
Threads/Processes are managed by the OS, expensive to spawn a bunch
Inter-Process Communication (IPC) very slow (for processes)
Significantly change structure of code

Building around race conditions in threads

Explicitly joining threads/processes
Still useful for many applications! Just different applicability

Jack Duvall Concurrency & Parallelism 2 16th November 2022 4 / 48

Drawbacks Of Threads/Multiprocessing
Threads/Processes are managed by the OS, expensive to spawn a bunch
Inter-Process Communication (IPC) very slow (for processes)
Significantly change structure of code

Building around race conditions in threads
Explicitly joining threads/processes

Still useful for many applications! Just different applicability

Jack Duvall Concurrency & Parallelism 2 16th November 2022 4 / 48

Drawbacks Of Threads/Multiprocessing
Threads/Processes are managed by the OS, expensive to spawn a bunch
Inter-Process Communication (IPC) very slow (for processes)
Significantly change structure of code

Building around race conditions in threads
Explicitly joining threads/processes

Still useful for many applications! Just different applicability

Jack Duvall Concurrency & Parallelism 2 16th November 2022 4 / 48

Drawbacks of Callbacks
Async in JavaScript (pre-Promises)

$.ajax("https://example.com/thingy").then(function(r){
// do something with r.status and r.data

});

Can be verbose, especially when nesting
Loops/other control flow is tricky or done outside the core language

Jack Duvall Concurrency & Parallelism 2 16th November 2022 5 / 48

Drawbacks of Callbacks
Async in JavaScript (pre-Promises)

$.ajax("https://example.com/thingy").then(function(r){
// do something with r.status and r.data

});

Can be verbose, especially when nesting

Loops/other control flow is tricky or done outside the core language

Jack Duvall Concurrency & Parallelism 2 16th November 2022 5 / 48

Drawbacks of Callbacks
Async in JavaScript (pre-Promises)

$.ajax("https://example.com/thingy").then(function(r){
// do something with r.status and r.data

});

Can be verbose, especially when nesting
Loops/other control flow is tricky or done outside the core language

Jack Duvall Concurrency & Parallelism 2 16th November 2022 5 / 48

Why Use Async For Concurrency?

Built into the language: most code doesn’t need significant changes to become
async-compatible, and async code still looks like normal code
Zero-cost: no heap allocations or dynamic dispatch unless specified in the type
Flexible choice of runtime: single- and multi-threaded implementations exist for
different platforms

Jack Duvall Concurrency & Parallelism 2 16th November 2022 6 / 48

Why Use Async For Concurrency?
Built into the language: most code doesn’t need significant changes to become
async-compatible, and async code still looks like normal code

Zero-cost: no heap allocations or dynamic dispatch unless specified in the type
Flexible choice of runtime: single- and multi-threaded implementations exist for
different platforms

Jack Duvall Concurrency & Parallelism 2 16th November 2022 6 / 48

Why Use Async For Concurrency?
Built into the language: most code doesn’t need significant changes to become
async-compatible, and async code still looks like normal code
Zero-cost: no heap allocations or dynamic dispatch unless specified in the type

Flexible choice of runtime: single- and multi-threaded implementations exist for
different platforms

Jack Duvall Concurrency & Parallelism 2 16th November 2022 6 / 48

Why Use Async For Concurrency?
Built into the language: most code doesn’t need significant changes to become
async-compatible, and async code still looks like normal code
Zero-cost: no heap allocations or dynamic dispatch unless specified in the type
Flexible choice of runtime: single- and multi-threaded implementations exist for
different platforms

Jack Duvall Concurrency & Parallelism 2 16th November 2022 6 / 48

Clean Async: Network Protocol
async fn heartbeat(client: ClientConn) -> Result<(), ConnError> {

loop {
client.send("ping").await?;
if client.recv().await? != "pong" { break; }

}
Ok(())

}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 7 / 48

Clean Async: Parallel Jobs
Playground Link:
#[async_recursion::async_recursion]
async fn reduce_max<T: Ord + Sync>(arr: &[T], lo: usize, hi: usize)
-> &T {

if lo == hi { return &arr[lo]; }
let mi = lo + (hi - lo) / 2;
let fut_lo = reduce_max(arr, lo, mi);
let fut_hi = reduce_max(arr, mi+1, hi);
let (res_lo, res_hi) = futures::join!(fut_lo, fut_hi);
match res_lo.cmp(res_hi) {

std::cmp::Ordering::Less => res_hi,
_ => res_lo,

}
}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 8 / 48

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=2c61193c866020ce971a804fafd877a5

Clean Async: Multi-Client Server
let listener = TcpListener::bind("127.0.0.1:6379").await.unwrap();
loop {

let (socket, _) = listener.accept().await.unwrap();
tokio::spawn(async move {

process(socket).await;
});

}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 9 / 48

Drawbacks of Async

Async is cooperative

Doing CPU-heavy work may block other coroutines from running
Not yielding via await will block other coroutines
Ideal for applications where busy time is minimal, and most time would be spent
waiting for the OS if all coroutines ran on a single thread

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 10 / 48

Drawbacks of Async
Async is cooperative

Doing CPU-heavy work may block other coroutines from running
Not yielding via await will block other coroutines
Ideal for applications where busy time is minimal, and most time would be spent
waiting for the OS if all coroutines ran on a single thread

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 10 / 48

Drawbacks of Async
Async is cooperative

Doing CPU-heavy work may block other coroutines from running

Not yielding via await will block other coroutines
Ideal for applications where busy time is minimal, and most time would be spent
waiting for the OS if all coroutines ran on a single thread

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 10 / 48

Drawbacks of Async
Async is cooperative

Doing CPU-heavy work may block other coroutines from running
Not yielding via await will block other coroutines

Ideal for applications where busy time is minimal, and most time would be spent
waiting for the OS if all coroutines ran on a single thread

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 10 / 48

Drawbacks of Async
Async is cooperative

Doing CPU-heavy work may block other coroutines from running
Not yielding via await will block other coroutines
Ideal for applications where busy time is minimal, and most time would be spent
waiting for the OS if all coroutines ran on a single thread

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 10 / 48

Drawbacks of Async
Async is cooperative

Doing CPU-heavy work may block other coroutines from running
Not yielding via await will block other coroutines
Ideal for applications where busy time is minimal, and most time would be spent
waiting for the OS if all coroutines ran on a single thread

Lots of tricky type and trait errors!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 10 / 48

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Streams

5 Async Reactors

6 Backup
Making Async Code Sync
Async Traits

Jack Duvall Concurrency & Parallelism 2 16th November 2022 11 / 48

Under The Hood Of Async
trait Future {

type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Self::Output>;

}1

enum Poll<T> {
Ready(T),
Pending,

}

If a type implements Future, you can use the await syntax with it!
Pin, Context: we’ll get to these later

Jack Duvall Concurrency & Parallelism 2 16th November 2022 12 / 48

Under The Hood Of Async
trait Future {

type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Self::Output>;

}1

enum Poll<T> {
Ready(T),
Pending,

}

If a type implements Future, you can use the await syntax with it!

Pin, Context: we’ll get to these later

Jack Duvall Concurrency & Parallelism 2 16th November 2022 12 / 48

Under The Hood Of Async
trait Future {

type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Self::Output>;

}1

enum Poll<T> {
Ready(T),
Pending,

}

If a type implements Future, you can use the await syntax with it!
Pin, Context: we’ll get to these later

Jack Duvall Concurrency & Parallelism 2 16th November 2022 12 / 48

Even Further Under The Hood
How does Rust even turn an async fn into a Future?

State Machines!
Each time you await another future, all the variables that could be used in later
execution are saved into the current state

Jack Duvall Concurrency & Parallelism 2 16th November 2022 13 / 48

Even Further Under The Hood
How does Rust even turn an async fn into a Future?

State Machines!

Each time you await another future, all the variables that could be used in later
execution are saved into the current state

Jack Duvall Concurrency & Parallelism 2 16th November 2022 13 / 48

Even Further Under The Hood
How does Rust even turn an async fn into a Future?

State Machines!
Each time you await another future, all the variables that could be used in later
execution are saved into the current state

Jack Duvall Concurrency & Parallelism 2 16th November 2022 13 / 48

Example Async Function: Sugared
async fn serve(addr: String){

let client = get_client(addr).await;
heartbeat(client).await.unwrap();

}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 14 / 48

Example Async Function: Desugared (1/3)
enum Serve {

State0(String), // Initial argument
State1(GetClient), // First internal future
State2(Heartbeat), // Second internal future
Terminated, // Completed state

}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 15 / 48

Example Async Function: Desugared (2/3)
impl Future for Serve {

type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<()> {

use Serve::*; // for convenience
loop { match *self { /* next slide */ } }

}
}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 16 / 48

Example Async Function: Desugared (3/3)
State0(addr) => { *self = State1(get_client(addr)); }
State1(ref mut get_client) => match Pin::new(get_client).poll(cx) {

Poll::Ready(client) => { *self = State2(heartbeat(client)); }
Poll::Pending => { return Poll::Pending; }

}
State2(ref mut heartbeat) => match Pin::new(heartbeat).poll(cx) {

Poll::Ready(()) => {
*self = Terminated;
return Poll::Ready(());

}
Poll::Pending => { return Poll::Pending; }

}
Terminated => { unreachable!("Terminated future cannot be polled"); }

Jack Duvall Concurrency & Parallelism 2 16th November 2022 17 / 48

This ”Desugaring” Is Approximate!

I have no idea what the compiler actually does
Not sure if anyone except the compiler team truly does
We don’t need to worry about the details, it’s all done for us :)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 18 / 48

This ”Desugaring” Is Approximate!
I have no idea what the compiler actually does

Not sure if anyone except the compiler team truly does
We don’t need to worry about the details, it’s all done for us :)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 18 / 48

This ”Desugaring” Is Approximate!
I have no idea what the compiler actually does
Not sure if anyone except the compiler team truly does

We don’t need to worry about the details, it’s all done for us :)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 18 / 48

This ”Desugaring” Is Approximate!
I have no idea what the compiler actually does
Not sure if anyone except the compiler team truly does
We don’t need to worry about the details, it’s all done for us :)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 18 / 48

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Streams

5 Async Reactors

6 Backup
Making Async Code Sync
Async Traits

Jack Duvall Concurrency & Parallelism 2 16th November 2022 19 / 48

What Does Pin Mean?

Pin<P> is a type with impls for P: Deref and/or P: DerefMut

This means P is a ”pointer-like” type; Deref and DerefMut control what happens
when you do *p
Examples for P: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: ”In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 16th November 2022 20 / 48

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

This means P is a ”pointer-like” type; Deref and DerefMut control what happens
when you do *p
Examples for P: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: ”In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 16th November 2022 20 / 48

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

This means P is a ”pointer-like” type; Deref and DerefMut control what happens
when you do *p

Examples for P: &T, &mut T, Box<T>, Rc<T>, Arc<T>
Guarantee: ”In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 16th November 2022 20 / 48

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

This means P is a ”pointer-like” type; Deref and DerefMut control what happens
when you do *p
Examples for P: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: ”In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 16th November 2022 20 / 48

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

This means P is a ”pointer-like” type; Deref and DerefMut control what happens
when you do *p
Examples for P: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: ”In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”

How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 16th November 2022 20 / 48

What Does Pin Mean?
Pin<P> is a type with impls for P: Deref and/or P: DerefMut

This means P is a ”pointer-like” type; Deref and DerefMut control what happens
when you do *p
Examples for P: &T, &mut T, Box<T>, Rc<T>, Arc<T>

Guarantee: ”In a Pin<P>, the value pointed to by P will have a stable location in
memory, and is only deallocated when P is dropped”
How it’s enforced: Pin<&mut T> is not a &mut T! This limits what you can do
with it

Jack Duvall Concurrency & Parallelism 2 16th November 2022 20 / 48

Why Do We Need Pin?
Remember how futures store local variables as states: what if references to these
variables are passed to other futures?

async fn incr(x: &mut i32) {
x += 1;

}
async fn main() {

let mut x = 0;
incr(&mut x).await;
assert_eq!(x, 1);

}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 21 / 48

Why Do We Need Pin?
/// Approximate states for `async fn main()`:
enum Main {

State0, // Initial state
State1 {

x: i32, // Local variable
incr: Incr, // Child, has a reference to this local!

},
Terminated,

}1

Jack Duvall Concurrency & Parallelism 2 16th November 2022 22 / 48

Why Do We Need Pin?
In order for incr’s reference to x to stay valid, the address of the Main value
must not change.

How could a local variable change address? If it gets moved (which can be just a
memcpy)

Pin enforces this exactly! Value pointed to by Pin<P> guaranteed to have a
stable address in memory

Jack Duvall Concurrency & Parallelism 2 16th November 2022 23 / 48

Why Do We Need Pin?
In order for incr’s reference to x to stay valid, the address of the Main value
must not change.

How could a local variable change address? If it gets moved (which can be just a
memcpy)

Pin enforces this exactly! Value pointed to by Pin<P> guaranteed to have a
stable address in memory

Jack Duvall Concurrency & Parallelism 2 16th November 2022 23 / 48

Why Do We Need Pin?
In order for incr’s reference to x to stay valid, the address of the Main value
must not change.

How could a local variable change address? If it gets moved (which can be just a
memcpy)

Pin enforces this exactly! Value pointed to by Pin<P> guaranteed to have a
stable address in memory

Jack Duvall Concurrency & Parallelism 2 16th November 2022 23 / 48

Another Example Of Pin Doing Something
fn take1(v: &mut Option<String>) -> String {

v.take()
}
fn take2(v: Pin<&mut Option<String>>) -> String {

v.take() // compiler error!
}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 24 / 48

Constructing A Pinned Value Is Unsafe
When P: Deref isn’t Unpin, the only way to get one is:

pub unsafe fn new_unchecked(pointer: P) -> Pin<P>

Compiler can’t guarantee data will stay pinned (that’s what the type is for!)
Have to prove safety for yourself, or
Usually use convenience wrappers (Box::pin, pin_utils::pin_mut!) that
already have proven safety

Jack Duvall Concurrency & Parallelism 2 16th November 2022 25 / 48

Constructing A Pinned Value Is Unsafe
When P: Deref isn’t Unpin, the only way to get one is:

pub unsafe fn new_unchecked(pointer: P) -> Pin<P>

Compiler can’t guarantee data will stay pinned (that’s what the type is for!)

Have to prove safety for yourself, or
Usually use convenience wrappers (Box::pin, pin_utils::pin_mut!) that
already have proven safety

Jack Duvall Concurrency & Parallelism 2 16th November 2022 25 / 48

Constructing A Pinned Value Is Unsafe
When P: Deref isn’t Unpin, the only way to get one is:

pub unsafe fn new_unchecked(pointer: P) -> Pin<P>

Compiler can’t guarantee data will stay pinned (that’s what the type is for!)
Have to prove safety for yourself, or

Usually use convenience wrappers (Box::pin, pin_utils::pin_mut!) that
already have proven safety

Jack Duvall Concurrency & Parallelism 2 16th November 2022 25 / 48

Constructing A Pinned Value Is Unsafe
When P: Deref isn’t Unpin, the only way to get one is:

pub unsafe fn new_unchecked(pointer: P) -> Pin<P>

Compiler can’t guarantee data will stay pinned (that’s what the type is for!)
Have to prove safety for yourself, or
Usually use convenience wrappers (Box::pin, pin_utils::pin_mut!) that
already have proven safety

Jack Duvall Concurrency & Parallelism 2 16th November 2022 25 / 48

The Unpin Trait

Sometimes, you know it’s OK for a value to not have a stable location in memory,
because it cannot be self-referrential

bool, i32, f64, etc.

Only matters for Pin<P> when <P as Deref>::Target: Unpin, not for
P: Unpin itself.
The difference is between the value being pointed to being able to move (useful),
or the pointer iself being able to move (pointers are just numbers, this is useless).

Jack Duvall Concurrency & Parallelism 2 16th November 2022 26 / 48

The Unpin Trait
Sometimes, you know it’s OK for a value to not have a stable location in memory,
because it cannot be self-referrential

bool, i32, f64, etc.
Only matters for Pin<P> when <P as Deref>::Target: Unpin, not for
P: Unpin itself.
The difference is between the value being pointed to being able to move (useful),
or the pointer iself being able to move (pointers are just numbers, this is useless).

Jack Duvall Concurrency & Parallelism 2 16th November 2022 26 / 48

The Unpin Trait
Sometimes, you know it’s OK for a value to not have a stable location in memory,
because it cannot be self-referrential

bool, i32, f64, etc.

Only matters for Pin<P> when <P as Deref>::Target: Unpin, not for
P: Unpin itself.
The difference is between the value being pointed to being able to move (useful),
or the pointer iself being able to move (pointers are just numbers, this is useless).

Jack Duvall Concurrency & Parallelism 2 16th November 2022 26 / 48

The Unpin Trait
Sometimes, you know it’s OK for a value to not have a stable location in memory,
because it cannot be self-referrential

bool, i32, f64, etc.
Only matters for Pin<P> when <P as Deref>::Target: Unpin, not for
P: Unpin itself.

The difference is between the value being pointed to being able to move (useful),
or the pointer iself being able to move (pointers are just numbers, this is useless).

Jack Duvall Concurrency & Parallelism 2 16th November 2022 26 / 48

The Unpin Trait
Sometimes, you know it’s OK for a value to not have a stable location in memory,
because it cannot be self-referrential

bool, i32, f64, etc.
Only matters for Pin<P> when <P as Deref>::Target: Unpin, not for
P: Unpin itself.
The difference is between the value being pointed to being able to move (useful),
or the pointer iself being able to move (pointers are just numbers, this is useless).

Jack Duvall Concurrency & Parallelism 2 16th November 2022 26 / 48

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Streams

5 Async Reactors

6 Backup
Making Async Code Sync
Async Traits

Jack Duvall Concurrency & Parallelism 2 16th November 2022 27 / 48

Streams Are Iterators Polled Like Futures

”If Future<Output=T> is the async version of a T, then Stream<Item=T> is the
async version of Iterator<Item=T>”
Main difference from a regular Future: can be polled for multiple items instead of
just one
Not part of standard library, but de-facto standard futures crate which is used
everywhere in the ecosystem

Jack Duvall Concurrency & Parallelism 2 16th November 2022 28 / 48

Streams Are Iterators Polled Like Futures
”If Future<Output=T> is the async version of a T, then Stream<Item=T> is the
async version of Iterator<Item=T>”

Main difference from a regular Future: can be polled for multiple items instead of
just one
Not part of standard library, but de-facto standard futures crate which is used
everywhere in the ecosystem

Jack Duvall Concurrency & Parallelism 2 16th November 2022 28 / 48

Streams Are Iterators Polled Like Futures
”If Future<Output=T> is the async version of a T, then Stream<Item=T> is the
async version of Iterator<Item=T>”
Main difference from a regular Future: can be polled for multiple items instead of
just one

Not part of standard library, but de-facto standard futures crate which is used
everywhere in the ecosystem

Jack Duvall Concurrency & Parallelism 2 16th November 2022 28 / 48

Streams Are Iterators Polled Like Futures
”If Future<Output=T> is the async version of a T, then Stream<Item=T> is the
async version of Iterator<Item=T>”
Main difference from a regular Future: can be polled for multiple items instead of
just one
Not part of standard library, but de-facto standard futures crate which is used
everywhere in the ecosystem

Jack Duvall Concurrency & Parallelism 2 16th November 2022 28 / 48

1

Jack Duvall Concurrency & Parallelism 2 16th November 2022 29 / 48

Stream Trait Definition
pub trait Stream {

type Item;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Option<Self::Item>>;

fn size_hint(&self) -> (usize, Option<usize>) { ... }
}

Wait, doesn’t Iterator have a lot more associated methods than this??

Jack Duvall Concurrency & Parallelism 2 16th November 2022 29 / 48

Stream Trait Definition
pub trait Stream {

type Item;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>)
-> Poll<Option<Self::Item>>;

fn size_hint(&self) -> (usize, Option<usize>) { ... }
}

Wait, doesn’t Iterator have a lot more associated methods than this??

Jack Duvall Concurrency & Parallelism 2 16th November 2022 29 / 48

futures extension traits

There are FutureExt and StreamExt traits, implemented for anything
implementing Future and Stream. These take the place of default associated
functions

Useful composition functions like .map(), utilities like .boxed(), etc.
Default impls cause vtable to blow up in size, bad for things that are often boxed like
Futures and Streams.

futures also provides join!, pin_mut!, and other useful macros
By default, doesn’t actually have any way to run futures! (There’s a feature for
that, but usually you’ll use a third-party crate)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 30 / 48

futures extension traits
There are FutureExt and StreamExt traits, implemented for anything
implementing Future and Stream. These take the place of default associated
functions

Useful composition functions like .map(), utilities like .boxed(), etc.
Default impls cause vtable to blow up in size, bad for things that are often boxed like
Futures and Streams.

futures also provides join!, pin_mut!, and other useful macros
By default, doesn’t actually have any way to run futures! (There’s a feature for
that, but usually you’ll use a third-party crate)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 30 / 48

futures extension traits
There are FutureExt and StreamExt traits, implemented for anything
implementing Future and Stream. These take the place of default associated
functions

Useful composition functions like .map(), utilities like .boxed(), etc.

Default impls cause vtable to blow up in size, bad for things that are often boxed like
Futures and Streams.

futures also provides join!, pin_mut!, and other useful macros
By default, doesn’t actually have any way to run futures! (There’s a feature for
that, but usually you’ll use a third-party crate)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 30 / 48

futures extension traits
There are FutureExt and StreamExt traits, implemented for anything
implementing Future and Stream. These take the place of default associated
functions

Useful composition functions like .map(), utilities like .boxed(), etc.
Default impls cause vtable to blow up in size, bad for things that are often boxed like
Futures and Streams.

futures also provides join!, pin_mut!, and other useful macros
By default, doesn’t actually have any way to run futures! (There’s a feature for
that, but usually you’ll use a third-party crate)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 30 / 48

futures extension traits
There are FutureExt and StreamExt traits, implemented for anything
implementing Future and Stream. These take the place of default associated
functions

Useful composition functions like .map(), utilities like .boxed(), etc.
Default impls cause vtable to blow up in size, bad for things that are often boxed like
Futures and Streams.

futures also provides join!, pin_mut!, and other useful macros

By default, doesn’t actually have any way to run futures! (There’s a feature for
that, but usually you’ll use a third-party crate)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 30 / 48

futures extension traits
There are FutureExt and StreamExt traits, implemented for anything
implementing Future and Stream. These take the place of default associated
functions

Useful composition functions like .map(), utilities like .boxed(), etc.
Default impls cause vtable to blow up in size, bad for things that are often boxed like
Futures and Streams.

futures also provides join!, pin_mut!, and other useful macros
By default, doesn’t actually have any way to run futures! (There’s a feature for
that, but usually you’ll use a third-party crate)

Jack Duvall Concurrency & Parallelism 2 16th November 2022 30 / 48

1

Jack Duvall Concurrency & Parallelism 2 16th November 2022 31 / 48

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Streams

5 Async Reactors

6 Backup
Making Async Code Sync
Async Traits

Jack Duvall Concurrency & Parallelism 2 16th November 2022 31 / 48

How Do We Run Futures?
(Content taken from Tokio’s Async Tutorital)
Recall: Futures just have a poll method. So let’s call that in a loop! This actually just
works!

fn run(mut fut: impl Future<Output = ()>, cx: &mut Context) {
pin_mut!(fut);
loop {

if let Poll::Ready(()) = fut.poll(cx) {
break;

}
}

}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 32 / 48

https://tokio.rs/tokio/tutorial/async

Ok But How Do We Actually Run Futures?
Use a pre-built Async Reactor like the ones in tokio, futures::executor, or
async-std

#[tokio::main]
async fn main() {

// Now you can call async functions in here!
}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 33 / 48

Well How Do Those Work?
Back to low-level stuff >:)

Polling in a loop considered harmful

Wastes CPU cycles, busy loops in general ”make the fans turn on”

Ideally, if a polling a future gives you Poll::Pending, you’d only poll it again
when it’s likely to return Poll::Ready
How do we know when a future would be likely to return Poll::Ready? Wakers!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 34 / 48

Well How Do Those Work?
Back to low-level stuff >:)

Polling in a loop considered harmful

Wastes CPU cycles, busy loops in general ”make the fans turn on”
Ideally, if a polling a future gives you Poll::Pending, you’d only poll it again
when it’s likely to return Poll::Ready
How do we know when a future would be likely to return Poll::Ready? Wakers!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 34 / 48

Well How Do Those Work?
Back to low-level stuff >:)

Polling in a loop considered harmful
Wastes CPU cycles, busy loops in general ”make the fans turn on”

Ideally, if a polling a future gives you Poll::Pending, you’d only poll it again
when it’s likely to return Poll::Ready
How do we know when a future would be likely to return Poll::Ready? Wakers!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 34 / 48

Well How Do Those Work?
Back to low-level stuff >:)

Polling in a loop considered harmful
Wastes CPU cycles, busy loops in general ”make the fans turn on”

Ideally, if a polling a future gives you Poll::Pending, you’d only poll it again
when it’s likely to return Poll::Ready

How do we know when a future would be likely to return Poll::Ready? Wakers!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 34 / 48

Well How Do Those Work?
Back to low-level stuff >:)

Polling in a loop considered harmful
Wastes CPU cycles, busy loops in general ”make the fans turn on”

Ideally, if a polling a future gives you Poll::Pending, you’d only poll it again
when it’s likely to return Poll::Ready
How do we know when a future would be likely to return Poll::Ready? Wakers!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 34 / 48

Wakers

Main use: calling .wake() on any Waker derived from the original should signal
the async reactor to poll the Future again.
Remember the Context that got passed in to the Future’s poll() function?
Literally its only job is to hold a Waker!
Waker: Clone + Send + Sync + Unpin so you can basically do whatever you
want with them

Jack Duvall Concurrency & Parallelism 2 16th November 2022 35 / 48

Wakers
Main use: calling .wake() on any Waker derived from the original should signal
the async reactor to poll the Future again.

Remember the Context that got passed in to the Future’s poll() function?
Literally its only job is to hold a Waker!
Waker: Clone + Send + Sync + Unpin so you can basically do whatever you
want with them

Jack Duvall Concurrency & Parallelism 2 16th November 2022 35 / 48

Wakers
Main use: calling .wake() on any Waker derived from the original should signal
the async reactor to poll the Future again.
Remember the Context that got passed in to the Future’s poll() function?
Literally its only job is to hold a Waker!

Waker: Clone + Send + Sync + Unpin so you can basically do whatever you
want with them

Jack Duvall Concurrency & Parallelism 2 16th November 2022 35 / 48

Wakers
Main use: calling .wake() on any Waker derived from the original should signal
the async reactor to poll the Future again.
Remember the Context that got passed in to the Future’s poll() function?
Literally its only job is to hold a Waker!
Waker: Clone + Send + Sync + Unpin so you can basically do whatever you
want with them

Jack Duvall Concurrency & Parallelism 2 16th November 2022 35 / 48

Future Example Using A Waker
impl Future for Delay {

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
if Instant::now() >= self.when { Poll::Ready(()) } else {

let waker = cx.waker().clone();
let when = self.when;
thread::spawn(move || {

let now = Instant::now();
if now < when { thread::sleep(when - now); }
waker.wake();

});
Poll::Pending

}
}

}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 36 / 48

Recap

Types implementing Future must be .await-ed
Use async fn to make a function-like future, letting you use .await inside
Use an async runtime like tokio to run your top-level async fn main()
Use the futures crate for lots of good utilities
This barely scratches the surface! Async is big, lots of libraries to explore, have
fun with it!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 37 / 48

Recap
Types implementing Future must be .await-ed

Use async fn to make a function-like future, letting you use .await inside
Use an async runtime like tokio to run your top-level async fn main()
Use the futures crate for lots of good utilities
This barely scratches the surface! Async is big, lots of libraries to explore, have
fun with it!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 37 / 48

Recap
Types implementing Future must be .await-ed
Use async fn to make a function-like future, letting you use .await inside

Use an async runtime like tokio to run your top-level async fn main()
Use the futures crate for lots of good utilities
This barely scratches the surface! Async is big, lots of libraries to explore, have
fun with it!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 37 / 48

Recap
Types implementing Future must be .await-ed
Use async fn to make a function-like future, letting you use .await inside
Use an async runtime like tokio to run your top-level async fn main()

Use the futures crate for lots of good utilities
This barely scratches the surface! Async is big, lots of libraries to explore, have
fun with it!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 37 / 48

Recap
Types implementing Future must be .await-ed
Use async fn to make a function-like future, letting you use .await inside
Use an async runtime like tokio to run your top-level async fn main()
Use the futures crate for lots of good utilities

This barely scratches the surface! Async is big, lots of libraries to explore, have
fun with it!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 37 / 48

Recap
Types implementing Future must be .await-ed
Use async fn to make a function-like future, letting you use .await inside
Use an async runtime like tokio to run your top-level async fn main()
Use the futures crate for lots of good utilities
This barely scratches the surface! Async is big, lots of libraries to explore, have
fun with it!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 37 / 48

Homework
Work on the final

Ask us anything!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 38 / 48

Homework
Work on the final Ask us anything!

Jack Duvall Concurrency & Parallelism 2 16th November 2022 38 / 48

Outline
1 Async/Await

2 The Future Trait

3 Pin Type

4 Streams

5 Async Reactors

6 Backup
Making Async Code Sync
Async Traits

Jack Duvall Concurrency & Parallelism 2 16th November 2022 39 / 48

Why Would You Want To Do This?

(Recall: sync code can be made async with tokio::spawn_blocking)
Having your top-level function be async isn’t the best, sometimes you want to
architecture your own event loop for GUI things

Before, we just used the #[tokio::main] macro. What does that expand do/can we
do it ourselves?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 40 / 48

Why Would You Want To Do This?
(Recall: sync code can be made async with tokio::spawn_blocking)

Having your top-level function be async isn’t the best, sometimes you want to
architecture your own event loop for GUI things

Before, we just used the #[tokio::main] macro. What does that expand do/can we
do it ourselves?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 40 / 48

Why Would You Want To Do This?
(Recall: sync code can be made async with tokio::spawn_blocking)

Having your top-level function be async isn’t the best, sometimes you want to
architecture your own event loop for GUI things

Before, we just used the #[tokio::main] macro. What does that expand do/can we
do it ourselves?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 40 / 48

Why Would You Want To Do This?
(Recall: sync code can be made async with tokio::spawn_blocking)

Having your top-level function be async isn’t the best, sometimes you want to
architecture your own event loop for GUI things

Before, we just used the #[tokio::main] macro. What does that expand do/can we
do it ourselves?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 40 / 48

Doing What #[tokio::main] Does
fn main() {

tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap()
.block_on(async {

println!("Hello world");
})

}

Jack Duvall Concurrency & Parallelism 2 16th November 2022 41 / 48

Manual Expansion Gives More Power

Change parameters of the runtime.
Spawn multiple futures onto runtime at once, without join!
Run futures ”in background”, while running other sync code

See The Tokio Docs for lots of code examples

Jack Duvall Concurrency & Parallelism 2 16th November 2022 42 / 48

https://tokio.rs/tokio/topics/bridging

Manual Expansion Gives More Power
Change parameters of the runtime.

Spawn multiple futures onto runtime at once, without join!
Run futures ”in background”, while running other sync code

See The Tokio Docs for lots of code examples

Jack Duvall Concurrency & Parallelism 2 16th November 2022 42 / 48

https://tokio.rs/tokio/topics/bridging

Manual Expansion Gives More Power
Change parameters of the runtime.
Spawn multiple futures onto runtime at once, without join!

Run futures ”in background”, while running other sync code
See The Tokio Docs for lots of code examples

Jack Duvall Concurrency & Parallelism 2 16th November 2022 42 / 48

https://tokio.rs/tokio/topics/bridging

Manual Expansion Gives More Power
Change parameters of the runtime.
Spawn multiple futures onto runtime at once, without join!
Run futures ”in background”, while running other sync code

See The Tokio Docs for lots of code examples

Jack Duvall Concurrency & Parallelism 2 16th November 2022 42 / 48

https://tokio.rs/tokio/topics/bridging

Manual Expansion Gives More Power
Change parameters of the runtime.
Spawn multiple futures onto runtime at once, without join!
Run futures ”in background”, while running other sync code

See The Tokio Docs for lots of code examples

Jack Duvall Concurrency & Parallelism 2 16th November 2022 42 / 48

https://tokio.rs/tokio/topics/bridging

You Can’t Have async fn In Traits (right now)
trait Webserver {

async fn handle(&self, r: Request) -> Response;
}

Too bad Rust doesn’t like this... Why?

Short Answer: async fn only guarantees a trait, not a type
Long Answer: mostly stolen from Niko Matsakis’ Blog

Jack Duvall Concurrency & Parallelism 2 16th November 2022 43 / 48

https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/

You Can’t Have async fn In Traits (right now)
trait Webserver {

async fn handle(&self, r: Request) -> Response;
}

Too bad Rust doesn’t like this... Why?
Short Answer: async fn only guarantees a trait, not a type

Long Answer: mostly stolen from Niko Matsakis’ Blog

Jack Duvall Concurrency & Parallelism 2 16th November 2022 43 / 48

https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/

You Can’t Have async fn In Traits (right now)
trait Webserver {

async fn handle(&self, r: Request) -> Response;
}

Too bad Rust doesn’t like this... Why?
Short Answer: async fn only guarantees a trait, not a type
Long Answer: mostly stolen from Niko Matsakis’ Blog

Jack Duvall Concurrency & Parallelism 2 16th November 2022 43 / 48

https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/

async fn Is Syntatic Sugar For This
trait Webserver {

fn handle(&self, r: Request) ->
impl Future<Output = Response> + '_;

}

...roughly speaking, that is

Jack Duvall Concurrency & Parallelism 2 16th November 2022 44 / 48

It Gets Funkier
trait Webserver {

type HandleFuture<'a>: Future<Output = Response> + 'a;
fn handle(&'a self, r: Request) -> Self::HandleFuture<'a>;

}

This is a “Generic Associated Type” (that is, generic over lifetimes, not types). This is
supported in Rust now, but wasn’t for a long time.

Jack Duvall Concurrency & Parallelism 2 16th November 2022 45 / 48

It Gets Funkier
trait Webserver {

type HandleFuture<'a>: Future<Output = Response> + 'a;
fn handle(&'a self, r: Request) -> Self::HandleFuture<'a>;

}

This is a “Generic Associated Type” (that is, generic over lifetimes, not types). This is
supported in Rust now, but wasn’t for a long time.

Jack Duvall Concurrency & Parallelism 2 16th November 2022 45 / 48

More Unresolved Questions
What if you wanted to constrain futures returned by an implementation?

fn launch_on_multiple_threads<W>(webserver: W)
where for<'a> W::HandleFuture<'a>: Send
{

// `Send` lets us share futures returned by
// `webserver.handle(r)` between threads

}

We needed to know the name of the associated type. Is it auto-generated? Do
people always need to desugar manually?
If you use a lot of futures, there’s a lot more Send bounds you need; is there a
better way to combine them all?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 46 / 48

More Unresolved Questions
What if you wanted to constrain futures returned by an implementation?

fn launch_on_multiple_threads<W>(webserver: W)
where for<'a> W::HandleFuture<'a>: Send
{

// `Send` lets us share futures returned by
// `webserver.handle(r)` between threads

}

We needed to know the name of the associated type. Is it auto-generated? Do
people always need to desugar manually?

If you use a lot of futures, there’s a lot more Send bounds you need; is there a
better way to combine them all?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 46 / 48

More Unresolved Questions
What if you wanted to constrain futures returned by an implementation?

fn launch_on_multiple_threads<W>(webserver: W)
where for<'a> W::HandleFuture<'a>: Send
{

// `Send` lets us share futures returned by
// `webserver.handle(r)` between threads

}

We needed to know the name of the associated type. Is it auto-generated? Do
people always need to desugar manually?
If you use a lot of futures, there’s a lot more Send bounds you need; is there a
better way to combine them all?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 46 / 48

Even More Considerations
If you use regular generics, many copies of code are made. Could be better to force the
use of trait objects:

trait Webserver {
fn handle(&self, r: Request) ->

dyn Future<Output = Response> + '_;
}

New problem: now the return type isn’t Sized (don’t know the size at compile time),
so we can’t generate code! Need a wrapper, but how to choose between Box, Arc,
others?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 47 / 48

Even More Considerations
If you use regular generics, many copies of code are made. Could be better to force the
use of trait objects:

trait Webserver {
fn handle(&self, r: Request) ->

dyn Future<Output = Response> + '_;
}

New problem: now the return type isn’t Sized (don’t know the size at compile time),
so we can’t generate code!

Need a wrapper, but how to choose between Box, Arc,
others?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 47 / 48

Even More Considerations
If you use regular generics, many copies of code are made. Could be better to force the
use of trait objects:

trait Webserver {
fn handle(&self, r: Request) ->

dyn Future<Output = Response> + '_;
}

New problem: now the return type isn’t Sized (don’t know the size at compile time),
so we can’t generate code! Need a wrapper, but how to choose between Box, Arc,
others?

Jack Duvall Concurrency & Parallelism 2 16th November 2022 47 / 48

A Good Enough Solution: async-trait Crate
Applying #[async_trait] to the original trait with an async fn results in the
following desugaring:

trait Webserver {
fn handle(&self, r: Request) ->

Pin<Box<dyn Future<Output=Response> + Send + '_>>;
}

mm delicous type + trait soup

Jack Duvall Concurrency & Parallelism 2 16th November 2022 48 / 48

A Good Enough Solution: async-trait Crate
Applying #[async_trait] to the original trait with an async fn results in the
following desugaring:

trait Webserver {
fn handle(&self, r: Request) ->

Pin<Box<dyn Future<Output=Response> + Send + '_>>;
}

mm delicous type + trait soup

Jack Duvall Concurrency & Parallelism 2 16th November 2022 48 / 48

	Async/Await
	The Future Trait
	Pin Type
	Streams
	Async Reactors
	Backup
	Making Async Code Sync
	Async Traits

