
Basic Types and Borrowing
structs, enums, pattern matching and the borrow
checker

Cooper Pierce

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce Basic Types and Borrowing 26th January 2022 1 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.

Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce Basic Types and Borrowing 26th January 2022 1 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.

We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce Basic Types and Borrowing 26th January 2022 1 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.

Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce Basic Types and Borrowing 26th January 2022 1 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.

Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce Basic Types and Borrowing 26th January 2022 1 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.

We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce Basic Types and Borrowing 26th January 2022 1 / 34

Hello, world!
fn main() -> () {

let course: i32 = 98008;
println!("Welcome to {}!", course);

}

As in C, the entry point of our program is main.
Here we’re returning unit, (), but we can return a couple different types from
main.
We can introduce variable bindings with let.
Optionally, we can type annotate these.
Function like macros have a ! at the end when applying them.
We can print values using println! or print! in the same way we would with
printf.

Cooper Pierce Basic Types and Borrowing 26th January 2022 1 / 34

Mutable variables
In most imperative languages, variables are mutable by default.

int fact(int n) {
int ans = 1;
while (n) {

ans *= n;
n--;

}
return ans;

}

If we want a variable to not be mutable we have to enforce this with a keyword like
const or similar.

Cooper Pierce Basic Types and Borrowing 26th January 2022 2 / 34

Rust, on the other hand, flips this. If we try the same in Rust:
fn fact(n: u32) -> u32 {

let ans = 1;
while n != 0 {

ans *= n;
n -= 1;

}
ans

}

we’d see an error like
error[E0384]: cannot assign to immutable argument `n`
--> src/lib.rs:5:17
|

1 | fn fact(n: u32) -> u32 {
| - help: consider making this binding mutable: `mut n`

...
5 | n -= 1;
| ^^^^^^ cannot assign to immutable argument

Cooper Pierce Basic Types and Borrowing 26th January 2022 3 / 34

In order to mark a variable as mutable, we need to have mut at the binding site.

fn fact(mut n: u32) -> u32 {
let mut ans = 1;
while n != 0 {

ans *= n;
n -= 1;

}
ans

}

This then permits later assignments to that binding.

Cooper Pierce Basic Types and Borrowing 26th January 2022 4 / 34

Shadowing
fn main() {

let x = 1;
println!("x is {}", x);
let x = 98008;
println!("x is {}", x);

}

What about this code? Does it run afoul of our rules about changing variables?

No! We haven’t changed anything here—there just happens to be a second, new
variable we’ve also called x.

Cooper Pierce Basic Types and Borrowing 26th January 2022 5 / 34

Shadowing
fn main() {

let x = 1;
println!("x is {}", x);
let x = 98008;
println!("x is {}", x);

}

What about this code? Does it run afoul of our rules about changing variables?

No! We haven’t changed anything here—there just happens to be a second, new
variable we’ve also called x.

Cooper Pierce Basic Types and Borrowing 26th January 2022 5 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce Basic Types and Borrowing 26th January 2022 6 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce Basic Types and Borrowing 26th January 2022 6 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce Basic Types and Borrowing 26th January 2022 6 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce Basic Types and Borrowing 26th January 2022 6 / 34

While at first this might seem similar to mutating the same variable, there are many
semantic differences.

let fruits = ["mango", "apple", "banana"];
let fruits = fruits.len();

Here we’ve declared two variables which happen to have the same name.

let mut fruits = ["mango", "apple", "banana"];
fruits = fruits.len();

This, to the contrary, results in a compiler error! We can’t assign a value of type
usize to a variable of type [&str; 3].

Cooper Pierce Basic Types and Borrowing 26th January 2022 6 / 34

References and Borrowing
Instead of working directly with pointers (often called “raw” pointers in Rust), we’ll
typically use references instead.

fn main() {
let x = 9;
let y = 2;
assert_eq!(compute_sum(&x, &y), 11);

}

fn compute_sum(a: &i32, b: &i32) -> i32 {
a + b

}

Cooper Pierce Basic Types and Borrowing 26th January 2022 7 / 34

Mutable References
What if we want to mutate a value through a reference?

fn main() {
let x = 0;
incr(&x);
assert_eq!(x, 1);

}

fn incr(x: &i32) {
*x += 1

}

Doesn’t work!
error[E0594]: cannot assign to `*x`, which is behind a `&` reference
--> src/main.rs:8:13
|

7 | fn incr(x: &i32) {
| ---- help: consider changing this to be a mutable reference: `&mut i32`

8 | *x += 1
| ^^^^^^^ `x` is a `&` reference, so the data it refers to cannot be written

Cooper Pierce Basic Types and Borrowing 26th January 2022 8 / 34

Mutable References
What if we want to mutate a value through a reference?

fn main() {
let x = 0;
incr(&x);
assert_eq!(x, 1);

}

fn incr(x: &i32) {
*x += 1

}

Doesn’t work!
error[E0594]: cannot assign to `*x`, which is behind a `&` reference
--> src/main.rs:8:13
|

7 | fn incr(x: &i32) {
| ---- help: consider changing this to be a mutable reference: `&mut i32`

8 | *x += 1
| ^^^^^^^ `x` is a `&` reference, so the data it refers to cannot be written

Cooper Pierce Basic Types and Borrowing 26th January 2022 8 / 34

If we want a mutable reference we need to ask for it explicitly:

fn incr(x: &mut i32) {
*x += 1

}

and we need to be explicit when borrowing:

fn main() {
let mut x = 0;
incr(&mut x);
assert_eq!(x, 1);

}

Note that in order to borrow x mutably, it has to be mutably bound.

Cooper Pierce Basic Types and Borrowing 26th January 2022 9 / 34

If we want a mutable reference we need to ask for it explicitly:

fn incr(x: &mut i32) {
*x += 1

}

and we need to be explicit when borrowing:

fn main() {
let mut x = 0;
incr(&mut x);
assert_eq!(x, 1);

}

Note that in order to borrow x mutably, it has to be mutably bound.

Cooper Pierce Basic Types and Borrowing 26th January 2022 9 / 34

Tuples
One of the simplest types of aggregate data in Rust is a tuple.

let x: (i32, bool) = (7, true);

Which we can also destructure into its components via binding:

let (i, b) = x;

or accessed by position:

let y = x.0 + 3;

Cooper Pierce Basic Types and Borrowing 26th January 2022 10 / 34

Tuples
One of the simplest types of aggregate data in Rust is a tuple.

let x: (i32, bool) = (7, true);

Which we can also destructure into its components via binding:

let (i, b) = x;

or accessed by position:

let y = x.0 + 3;

Cooper Pierce Basic Types and Borrowing 26th January 2022 10 / 34

Tuples
One of the simplest types of aggregate data in Rust is a tuple.

let x: (i32, bool) = (7, true);

Which we can also destructure into its components via binding:

let (i, b) = x;

or accessed by position:

let y = x.0 + 3;

Cooper Pierce Basic Types and Borrowing 26th January 2022 10 / 34

Tuples can have many distinct fields, which may themselves be of any type

let x = (1, 3e-7, false, "Hello!");

and can be returned from functions, or used as arguments

fn divmod(n: u32, k: u32) -> (u32, u32) {
if n < k {

(0, n)
} else {

let (q, d) = divmod(n, n - k);
(q + 1, d)

}
}

Cooper Pierce Basic Types and Borrowing 26th January 2022 11 / 34

Arrays
Rust also has arrays, which provide for storage for many elements which have the same
type. The size of an array must be statically known, and arrays cannot be resized.
We write array types [T; N] for an N element array with element type T.

let x: [i32; 5] = [0, 1, 2, 3, 4];
let y: [i32; 100] = [0; 100];

Accessing an element in the array is fairly standard:

y[0] = x[1] + x[3];
assert_eq!(y, 4);

Cooper Pierce Basic Types and Borrowing 26th January 2022 12 / 34

Arrays
Rust also has arrays, which provide for storage for many elements which have the same
type. The size of an array must be statically known, and arrays cannot be resized.
We write array types [T; N] for an N element array with element type T.

let x: [i32; 5] = [0, 1, 2, 3, 4];
let y: [i32; 100] = [0; 100];

Accessing an element in the array is fairly standard:

y[0] = x[1] + x[3];
assert_eq!(y, 4);

Cooper Pierce Basic Types and Borrowing 26th January 2022 12 / 34

What if we index out-of-bounds?

let mut x = [1, 2, 3];
x[4] = 7;

Unlike C, there’s no undefined behaviour here! Instead, the program will
“panic”—there are some settings for exactly what this means, but by default you’ll get
a backtrace and the program will terminate.
thread 'main' panicked at 'index out of bounds: the len is 1 but the index is 1', src/main.rs:4:5
stack backtrace:

0: rust_begin_unwind
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/std/src/panicking.rs:498:5

1: core::panicking::panic_fmt
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:107:14

2: core::panicking::panic_bounds_check
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:75:5

3: playground::main
at ./src/main.rs:4:5

4: core::ops::function::FnOnce::call_once
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/ops/function.rs:227:5

note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.

Cooper Pierce Basic Types and Borrowing 26th January 2022 13 / 34

What if we index out-of-bounds?

let mut x = [1, 2, 3];
x[4] = 7;

Unlike C, there’s no undefined behaviour here! Instead, the program will
“panic”—there are some settings for exactly what this means, but by default you’ll get
a backtrace and the program will terminate.
thread 'main' panicked at 'index out of bounds: the len is 1 but the index is 1', src/main.rs:4:5
stack backtrace:

0: rust_begin_unwind
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/std/src/panicking.rs:498:5

1: core::panicking::panic_fmt
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:107:14

2: core::panicking::panic_bounds_check
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/panicking.rs:75:5

3: playground::main
at ./src/main.rs:4:5

4: core::ops::function::FnOnce::call_once
at /rustc/db9d1b20bba1968c1ec1fc49616d4742c1725b4b/library/core/src/ops/function.rs:227:5

note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.

Cooper Pierce Basic Types and Borrowing 26th January 2022 13 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.

What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce Basic Types and Borrowing 26th January 2022 14 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.

What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce Basic Types and Borrowing 26th January 2022 14 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?

What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce Basic Types and Borrowing 26th January 2022 14 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?
What if x doesn’t point to n elements?

What if x is an otherwise invalid pointer?

Cooper Pierce Basic Types and Borrowing 26th January 2022 14 / 34

Slices
Often in C we might operate on an array by the use of a pointer to its initial element:

int sum(int *x, size_t n) {
int sum = 0;
for (size_t i = 0; i < n; ++i) {

sum += x[i];
}
return sum;

}

This is error prone in several ways.
What if x is a null pointer?
What if x doesn’t point to n elements?
What if x is an otherwise invalid pointer?

Cooper Pierce Basic Types and Borrowing 26th January 2022 14 / 34

We can avoid these issues by using a “slice” type in Rust.

[T] is an unsized type representing some contiguous sequence of elements of type
T—this isn’t very useful on its own, because we don’t know how big it is!

Using a reference, we can get something we do know the size of:
&[T] is the type of shared slices
&mut [T] is the type of mutable/exclusive slices

Both of these will additionally store a length, along with a pointer to the start of the
slice.

Cooper Pierce Basic Types and Borrowing 26th January 2022 15 / 34

We can avoid these issues by using a “slice” type in Rust.

[T] is an unsized type representing some contiguous sequence of elements of type
T—this isn’t very useful on its own, because we don’t know how big it is!

Using a reference, we can get something we do know the size of:
&[T] is the type of shared slices
&mut [T] is the type of mutable/exclusive slices

Both of these will additionally store a length, along with a pointer to the start of the
slice.

Cooper Pierce Basic Types and Borrowing 26th January 2022 15 / 34

So if we want to sum an array in Rust, we might instead have:

fn sum(xs: &[i32]) -> i32 {
let mut sum = 0;
for x in xs {

sum += x;
}
sum

}

which we could use like so:

let x = [1, 2, 3, 4];

assert_eq!(sum(&x[..]), 10);
assert_eq!(sum(&x[1..]), 9);
assert_eq!(sum(&x[..2]), 3);

Cooper Pierce Basic Types and Borrowing 26th January 2022 16 / 34

So if we want to sum an array in Rust, we might instead have:

fn sum(xs: &[i32]) -> i32 {
let mut sum = 0;
for x in xs {

sum += x;
}
sum

}

which we could use like so:

let x = [1, 2, 3, 4];

assert_eq!(sum(&x[..]), 10);
assert_eq!(sum(&x[1..]), 9);
assert_eq!(sum(&x[..2]), 3);

Cooper Pierce Basic Types and Borrowing 26th January 2022 16 / 34

structs
Like many other languages, Rust supports structs.
We can have traditional, C-style structs:

struct Student {
andrewid: [u8; 8],
name: String,
section: char,

}

or named tuple style structs:

struct Fraction(u32, u32);

or unit structs:

struct Refl;

Cooper Pierce Basic Types and Borrowing 26th January 2022 17 / 34

structs
Like many other languages, Rust supports structs.
We can have traditional, C-style structs:

struct Student {
andrewid: [u8; 8],
name: String,
section: char,

}

or named tuple style structs:

struct Fraction(u32, u32);

or unit structs:

struct Refl;

Cooper Pierce Basic Types and Borrowing 26th January 2022 17 / 34

structs
Like many other languages, Rust supports structs.
We can have traditional, C-style structs:

struct Student {
andrewid: [u8; 8],
name: String,
section: char,

}

or named tuple style structs:

struct Fraction(u32, u32);

or unit structs:

struct Refl;

Cooper Pierce Basic Types and Borrowing 26th January 2022 17 / 34

Every field of a struct must be assigned a value when initialising it.

let jack = Student {
andrewid: [b'j', b'r', b'd', b'u', b'v', b'a', b'l', b'l'],
name: "Jack Duvall",
section: 'A',

};

If there are local variables with the same name, we can shortcut this somewhat:

// Dereference because this gives a slice
let andrewid = *b"cppierce";
let name = "Cooper Pierce";
let section = 'A';
let cooper = Student { andrewid, name, student };

Cooper Pierce Basic Types and Borrowing 26th January 2022 18 / 34

Every field of a struct must be assigned a value when initialising it.

let jack = Student {
andrewid: [b'j', b'r', b'd', b'u', b'v', b'a', b'l', b'l'],
name: "Jack Duvall",
section: 'A',

};

If there are local variables with the same name, we can shortcut this somewhat:

// Dereference because this gives a slice
let andrewid = *b"cppierce";
let name = "Cooper Pierce";
let section = 'A';
let cooper = Student { andrewid, name, student };

Cooper Pierce Basic Types and Borrowing 26th January 2022 18 / 34

Member access for structs is similar to C, with the exception of eliminating ->.

assert_ne(cooper.andrewid, jack.andrewid);

let s = &cooper;
assert_eq(cooper.name, s.name);

Cooper Pierce Basic Types and Borrowing 26th January 2022 19 / 34

enums
Rust also has enums. C-style “named constants” like

enum Weekday {
Monday,
Tuesday,
Wednesday,
Thursday,
Friday

}

There are kept in their own namespace:

let today = Weekday::Wednesday;

Cooper Pierce Basic Types and Borrowing 26th January 2022 20 / 34

enums
Rust also has enums. C-style “named constants” like

enum Weekday {
Monday,
Tuesday,
Wednesday,
Thursday,
Friday

}

There are kept in their own namespace:

let today = Weekday::Wednesday;

Cooper Pierce Basic Types and Borrowing 26th January 2022 20 / 34

And also more functionally-inspiried ones with data:

enum Number {
Rational { numer: u32, denom: u32, sign: bool }
Float(f64),
Int(i32),
Infinity,

}

Which we can use similarily:

let f = Number::Float(1.6);
let r = Number::Rational { numer: 3, denom: 8, sign: true };

What if we used an enum for sign?

Cooper Pierce Basic Types and Borrowing 26th January 2022 21 / 34

And also more functionally-inspiried ones with data:

enum Number {
Rational { numer: u32, denom: u32, sign: bool }
Float(f64),
Int(i32),
Infinity,

}

Which we can use similarily:

let f = Number::Float(1.6);
let r = Number::Rational { numer: 3, denom: 8, sign: true };

What if we used an enum for sign?

Cooper Pierce Basic Types and Borrowing 26th January 2022 21 / 34

And also more functionally-inspiried ones with data:

enum Number {
Rational { numer: u32, denom: u32, sign: bool }
Float(f64),
Int(i32),
Infinity,

}

Which we can use similarily:

let f = Number::Float(1.6);
let r = Number::Rational { numer: 3, denom: 8, sign: true };

What if we used an enum for sign?

Cooper Pierce Basic Types and Borrowing 26th January 2022 21 / 34

impl blocks
We can add associated functions and methods to a struct or enum we’ve defined by
using an impl block.

struct Rectangle {
width: u32,
height: u32,

}

impl Rectangle {
fn unit() -> Self {

Self { width: 1, height: 1 }
}

fn area(&self) -> u32 {
self.width * self.height

}
}

Cooper Pierce Basic Types and Borrowing 26th January 2022 22 / 34

Invoking an associated function is done by qualifying it with the type

let unit_square = Rectangle::unit();

and methods are typically invoked using a dot:

let r = Rectangle { width: 4, height: 7 };
assert_eq!(unit_square.area(), 1);
assert_eq!(r.area(), 28);

Cooper Pierce Basic Types and Borrowing 26th January 2022 23 / 34

Invoking an associated function is done by qualifying it with the type

let unit_square = Rectangle::unit();

and methods are typically invoked using a dot:

let r = Rectangle { width: 4, height: 7 };
assert_eq!(unit_square.area(), 1);
assert_eq!(r.area(), 28);

Cooper Pierce Basic Types and Borrowing 26th January 2022 23 / 34

if expressions
Similar to many functional programming languages, if does not introduce a statement,
but instead an expression.

So while we can do

let x;
if some_condition {

x = 7;
} else {

x = 9
}

You’d typically see

let x = if some_condition { 7 } else { 9 };

Cooper Pierce Basic Types and Borrowing 26th January 2022 24 / 34

if expressions
Similar to many functional programming languages, if does not introduce a statement,
but instead an expression.

So while we can do

let x;
if some_condition {

x = 7;
} else {

x = 9
}

You’d typically see

let x = if some_condition { 7 } else { 9 };

Cooper Pierce Basic Types and Borrowing 26th January 2022 24 / 34

If we omit the else branch the if branch must evaluate to unit—()

if user.is_admin() {
println!("Hello administator!");

}

Note that any expression followed by a semicolon will be an expression which discards
the result and evaluates to unit.

Cooper Pierce Basic Types and Borrowing 26th January 2022 25 / 34

If we omit the else branch the if branch must evaluate to unit—()

if user.is_admin() {
println!("Hello administator!");

}

Note that any expression followed by a semicolon will be an expression which discards
the result and evaluates to unit.

Cooper Pierce Basic Types and Borrowing 26th January 2022 25 / 34

while loops
We have the typical while loop:

fn exp(mut n: i32) -> i32 {
let mut b = 2;
let mut x = 1;
while n > 1 {

if n % 2 == 1 {
x = x * b;

}
b *= b;
n /= 2;

}
x * b

}

Cooper Pierce Basic Types and Borrowing 26th January 2022 26 / 34

for loops
and iterator-based for loops:

let nums = [1, 2, 3, 4, 5];
for n in nums {

println!("{}", n);
}

Range types are often useful here:

for i in 0..n {
println("{} squared is {}", i, i * i);

}

Cooper Pierce Basic Types and Borrowing 26th January 2022 27 / 34

for loops
and iterator-based for loops:

let nums = [1, 2, 3, 4, 5];
for n in nums {

println!("{}", n);
}

Range types are often useful here:

for i in 0..n {
println("{} squared is {}", i, i * i);

}

Cooper Pierce Basic Types and Borrowing 26th January 2022 27 / 34

loop loops
In addition, we also have an unconditional loop construct:

loop {
println!("Hi again!");

}

This is more useful when using break

let prime = loop {
let p = gen_random_number();
if miller_rabin(p) {

break p;
}

};

Cooper Pierce Basic Types and Borrowing 26th January 2022 28 / 34

loop loops
In addition, we also have an unconditional loop construct:

loop {
println!("Hi again!");

}

This is more useful when using break

let prime = loop {
let p = gen_random_number();
if miller_rabin(p) {

break p;
}

};

Cooper Pierce Basic Types and Borrowing 26th January 2022 28 / 34

match expressions
What if we want to deal with many possible branching choices for an expression?

fn fib(n: u32) -> u32 {
match n {

0 | 1 => 0,
n => fib(n - 1) + fib(n - 2),

}
}

Cooper Pierce Basic Types and Borrowing 26th January 2022 29 / 34

This is a bit more useful when dealing with enums

enum Coin { Penny, Nickel, Dime, Quarter }

impl Coin {
fn value(&self) -> u32 {

match self {
Coin::Penny => 1,
Coin::Nickel => 5,
Coin::Dime => 10,
Coin::Quarter => 25,

}
}

}

Cooper Pierce Basic Types and Borrowing 26th January 2022 30 / 34

Most of all when the enum has data
enum Transmission {

Incoming(String)
Done,

}

fn listen(&mut p: Port) {
loop {

match p.receive() {
Transmission::Incoming(s) => {

println!(s);
}
Done => return,

}
}

}

Cooper Pierce Basic Types and Borrowing 26th January 2022 31 / 34

Sometimes we can employ more specific pattern matching constructs to simplfy code.

enum Transmission {
Incoming(String)
Done,

}

fn listen(&mut p: Port) {
while let Transmission::Incoming(s) = p.receive() {

println!(s);
}

}

Likewise, there’s also if let. However, you’ll essentially always want to use match if
you have two or more things to do.

Cooper Pierce Basic Types and Borrowing 26th January 2022 32 / 34

Sometimes we can employ more specific pattern matching constructs to simplfy code.

enum Transmission {
Incoming(String)
Done,

}

fn listen(&mut p: Port) {
while let Transmission::Incoming(s) = p.receive() {

println!(s);
}

}

Likewise, there’s also if let. However, you’ll essentially always want to use match if
you have two or more things to do.

Cooper Pierce Basic Types and Borrowing 26th January 2022 32 / 34

Reference Pitfalls
In many other languages with references (e.g., C++) there are a number of potential
pitfalls:

int main() {
auto v = std::vector<int>{1, 2, 3, 4};
auto x = &v[1];
v.push_back(5);
*x = 0;
std::cout << v[1] << std::endl;
return 0;

}

What’s wrong?

By changing v, we invalidate the reference x!

Cooper Pierce Basic Types and Borrowing 26th January 2022 33 / 34

Reference Pitfalls
In many other languages with references (e.g., C++) there are a number of potential
pitfalls:

int main() {
auto v = std::vector<int>{1, 2, 3, 4};
auto x = &v[1];
v.push_back(5);
*x = 0;
std::cout << v[1] << std::endl;
return 0;

}

What’s wrong?
By changing v, we invalidate the reference x!

Cooper Pierce Basic Types and Borrowing 26th January 2022 33 / 34

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time . . .
. . . but, you can only have one exclusive borrow (&mut), and not at the same
time as any shared borrow.

Cooper Pierce Basic Types and Borrowing 26th January 2022 34 / 34

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.

There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time . . .
. . . but, you can only have one exclusive borrow (&mut), and not at the same
time as any shared borrow.

Cooper Pierce Basic Types and Borrowing 26th January 2022 34 / 34

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.

When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time . . .
. . . but, you can only have one exclusive borrow (&mut), and not at the same
time as any shared borrow.

Cooper Pierce Basic Types and Borrowing 26th January 2022 34 / 34

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).

You can have as many shared borrows (&) as you want, all at the same time . . .
. . . but, you can only have one exclusive borrow (&mut), and not at the same
time as any shared borrow.

Cooper Pierce Basic Types and Borrowing 26th January 2022 34 / 34

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time . . .

. . . but, you can only have one exclusive borrow (&mut), and not at the same
time as any shared borrow.

Cooper Pierce Basic Types and Borrowing 26th January 2022 34 / 34

Rules for Borrowing
In Rust, this cannot happen, because borrowing has restrictions:

Every value has an “owner”.
There can only be one owner.
When ownership of the value ends, the value will be “dropped” (think
deallocated/destructed).
You can have as many shared borrows (&) as you want, all at the same time . . .
. . . but, you can only have one exclusive borrow (&mut), and not at the same
time as any shared borrow.

Cooper Pierce Basic Types and Borrowing 26th January 2022 34 / 34

	Rust Basics
	Structed Data
	Control Flow
	Rules for References

