
Ownership and Function Types
also to include lifetimes, more borrow checker rules,
and closures

Jack Duvall

Ownership

Jack Duvall Ownership and Function Types 4th February 2022 1 / 55

Recall: Stack and Heap
Regions of memory you can store data in
Stack:

Local to current function invocation
Data must have known size at compile time
Automatically freed when function exits

Heap:
Entire program can view
Data can have unknown size
Must allocate and free ”manually”

Jack Duvall Ownership and Function Types 4th February 2022 2 / 55

Definitions
Value: “The literal bits in memory somewhere”
Variable: “The label for those bits at any given moment”

// The variable x has a value of 98008
let x = 98008;

Jack Duvall Ownership and Function Types 4th February 2022 3 / 55

More Definitions
Scope: “A set of {}”
Dropping: “Making a value inaccessible”

e.g. popping stack frame or calling free()

fn f() { // x is scoped to f
let x = String::from("hello");
drop(x); // x is manually dropped

}

Jack Duvall Ownership and Function Types 4th February 2022 4 / 55

Ownership Rules
From https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html
Each value in Rust has a single variable called its owner.
There can only be one owner at a time.
When the owner exits its scope, the value will be dropped.

Jack Duvall Ownership and Function Types 4th February 2022 5 / 55

https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html

Upcoming Ownership Examples
Simple Move
Simple Copy
Move Into Function
Copy Into Function
Cloning

Jack Duvall Ownership and Function Types 4th February 2022 6 / 55

Ownership Example: Simple Move
let s1 = String::from("hello");
let s2 = s1; // `s2` now "owns" the data that `s1` used to refer to
println!("{}", s1); // So this is an error

Jack Duvall Ownership and Function Types 4th February 2022 7 / 55

Ownership Example: Simple Move

Jack Duvall Ownership and Function Types 4th February 2022 8 / 55

Ownership Example: Simple Copy
let x = 5;
let y = x; // `x` can be copied efficiently, so the data is just

// copied into `y`
println!("{}", x); // This is OK

Jack Duvall Ownership and Function Types 4th February 2022 9 / 55

Ownership Example: Move Into Function
fn take_ownership(y: String) { println!("{}", y); }
fn main() {

let x = String::from("hello");
take_ownership(x);
// using `x` is an error here, because `take_ownership` took
// ownership, so `x`'s value is somewhere else

}

Jack Duvall Ownership and Function Types 4th February 2022 10 / 55

Ownership Example: Copy Into Function
fn makes_copy(y: i32) { println!("{}", y); }
fn main() {

let x = 5;
makes_copy(x);
// Passing `x` into `makes_copy` made a copy of `x`'s value,
// so `x` still has ownership

}

Jack Duvall Ownership and Function Types 4th February 2022 11 / 55

Ownership: Cloning
What if you have data that can’t be automatically copied, but you still want a
copy?
Solution: .clone() the data!

let s1 = String::from("hello");
let s2 = s1.clone();
// `s1` and `s2` refer to different memory locations now

Jack Duvall Ownership and Function Types 4th February 2022 12 / 55

Ownership: Cloning: Diagram

Jack Duvall Ownership and Function Types 4th February 2022 13 / 55

When Can I Copy Or Clone?
Copy: whenever a type implements the Copy trait!
Clone: whenever a type implements the Clone trait!
We’ll get into traits more next lecture
Important: the programmer implementing the struct decides if/how these
operations are allowed

Restriction on Copy: every field/variant must be Copy
If something is Copy, it must also be Clone

Jack Duvall Ownership and Function Types 4th February 2022 14 / 55

Borrowing

Jack Duvall Ownership and Function Types 4th February 2022 15 / 55

References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers

Jack Duvall Ownership and Function Types 4th February 2022 16 / 55

Immutable References
&Ty

Only let you read
Any number can exist at one point, so long as there’s no mutable references to
the object at the same time.

Jack Duvall Ownership and Function Types 4th February 2022 17 / 55

Immutable References: Example
let x: i32 = 5;
let x_ref: &i32 = &x;
let x_ref2: &i32 = &x; // Ok to have more than one immutable ref
let x_ref3: &i32 = x_ref; // Immutable reference is `Copy`
let y: i32 = *x_ref; // Ok, `i32` is `Copy`

Jack Duvall Ownership and Function Types 4th February 2022 18 / 55

Mutable References
&mut Ty

Let you read and write
Can only be made if the underlying object is also mutable
Only one can exist at a time

Jack Duvall Ownership and Function Types 4th February 2022 19 / 55

Mutable References: Example
let x: i32 = 5;
let x_mut_ref: &mut i32 = &mut x; // Does not compile, `x` is not

// `mut`
let mut y: i32 = 6;
let y_mut_ref: &mut i32 = &mut y;
let y_mut_ref2: &mut i32 = &mut y; // Does not compile, can't

// have more than one mut ref
let y_mut_ref3: &mut i32 = y_mut_ref; // Does not compile, mut

// refs aren't `Copy`
*y_mut_ref += 2;

Jack Duvall Ownership and Function Types 4th February 2022 20 / 55

Lifetimes

Jack Duvall Ownership and Function Types 4th February 2022 21 / 55

Why Do We Need Lifetimes?
To know how long a reference is valid for!
Lifetime: “For a variable, the span of time that it owns a value”
Roughly corresponds to the scope of the variable
Construct of Rust’s borrow checker, not checked at runtime!

Jack Duvall Ownership and Function Types 4th February 2022 22 / 55

Lifetimes Roughly Correspond To Scope
fn main() {

let x_ref1 = &x; // Does not compile, can't reference `x`
// before it's defined

let x = String::from("hello");
let x_ref2 = &x;
take_ownership(x);
let x_ref3 = &x; // Does not compile, `x`'s value has been

// moved out, no longer in this scope
}

Jack Duvall Ownership and Function Types 4th February 2022 23 / 55

Returning Invalid Reference
fn make_string() -> &String {

let s = String::from("hello");
&s

}

Scope of s is the function body of make_string, which is the same as its lifetime
Compiler knows lifetime of make_string will end once it returns, so reference
won’t be valid

Jack Duvall Ownership and Function Types 4th February 2022 24 / 55

Fixing The Example: Use Moves
Just don’t return a reference! Move semantics already avoid copying things on the
heap when not necessary

fn make_string() -> String {
let s = String::from("hello");
s

}

Jack Duvall Ownership and Function Types 4th February 2022 25 / 55

Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word1.
The 'static lifetime is special: denotes “will be valid until the program
terminates”
Rare you’ll need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums
Other, more funky functions

1Looking at you, SML
Jack Duvall Ownership and Function Types 4th February 2022 26 / 55

Explicit Lifetimes In Structs
struct Vertex<'a> {

edges: Vec<&'a Edge<'a>>,
}
struct Edge<'a> {

info: EdgeInfo,
vertex: &'a Vertex<'a>,

}

Jack Duvall Ownership and Function Types 4th February 2022 27 / 55

Explicit Lifetimes In Function Signatures
fn bfs<'a>(

start_vertex: &'a Vertex<'a>,
max_depth: usize,

) -> Vec<&'a Vertex<'a>> {
…

}

Jack Duvall Ownership and Function Types 4th February 2022 28 / 55

Rules For Lifetimes In Function Signatures
(From https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html) Function
signatures follow these rules:

any reference must have an annotated lifetime
any reference being returned must have the same lifetime as an input, or be
'static

fn f1<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
// what goes here?

}
fn f2<'a, 'b>(x: &'a i32) -> &'b i32 {

// what goes here?
}

Jack Duvall Ownership and Function Types 4th February 2022 29 / 55

https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html

Lifetime Elison
Wait, didn’t we forget to write these explicit lifetimes last lecture??
Certain patterns in Rust are very common:

// One input lifetime, return value is reference
fn f3<'a>(x: &'a i32) -> &'a i32 { ... }
// Multiple input lifetimes, return value is not reference
fn f4<'a, 'b, 'c>(x: &'a i32, y: &'b i32, z: &'c i32) -> i32 { ... }

So if it falls into one of these patterns, you don’t have to explicitly write them

Jack Duvall Ownership and Function Types 4th February 2022 30 / 55

Fixing The Example Again: Allocators
fn make_string(allocator: &mut Vec<String>) -> &String {

allocator.push(String::from("hello"));
&allocator[allocator.len() - 1]

}

Input and Output lifetimes elided to be the same
Valid reference returned via reference to original data

Jack Duvall Ownership and Function Types 4th February 2022 31 / 55

Not Actually Lifetimes: Loop Labels
'outer: for y in 0..5 {

'inner: for x in 0..5 {
if arr1[y][x] { break 'outer; }
if arr2[x][y] { break 'inner; }

}
}

Same syntax as lifetimes, and same sort of scope idea, but you can’t actually make
references with these names and have it make sense

Jack Duvall Ownership and Function Types 4th February 2022 32 / 55

Function Types

Jack Duvall Ownership and Function Types 4th February 2022 33 / 55

What Are Function Types?
Every value has a type
Functions are Values! (sorry 15-122 stans)
Allows us to pass in functions as arguments to other functions, which many other
good languages do in some capacity

Jack Duvall Ownership and Function Types 4th February 2022 34 / 55

Rust’s Function Types
Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty
Function Traits:

Fn
FnOnce
FnMut

Jack Duvall Ownership and Function Types 4th February 2022 35 / 55

Function Pointers

Jack Duvall Ownership and Function Types 4th February 2022 36 / 55

Attributes Of A Function Pointer
Value of the function pointer type is either:

A “function item” (named function in the code), or
A closure that doesn’t capture (which is effectively the same)

Jack Duvall Ownership and Function Types 4th February 2022 37 / 55

Example: Using A Function Pointer
fn double(n: i32) -> i32 { 2 * n }
fn giveme_fnptr(f: fn(i32) -> i32) -> i32 {

f(42)
}
fn test_fnptr() {

assert_eq!(giveme_fnptr(double), 84);
}

Jack Duvall Ownership and Function Types 4th February 2022 38 / 55

Example: Using A Function Pointer
fn double(n: i32) -> i32 { 2 * n }
fn giveme_fnptr(f: fn(i32) -> i32) -> i32 {

f(42)
}
fn test_fnptr() {

assert_eq!(giveme_fnptr(double), 84);
}

Jack Duvall Ownership and Function Types 4th February 2022 38 / 55

Closures

Jack Duvall Ownership and Function Types 4th February 2022 39 / 55

Closure Syntax
From https://doc.rust-lang.org/book/ch13-01-closures.html

fn add_one_v1 (x: i32) -> i32 { x + 1 }
let add_one_v2 = |x: i32| -> i32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

Jack Duvall Ownership and Function Types 4th February 2022 40 / 55

https://doc.rust-lang.org/book/ch13-01-closures.html

Capturing State With Closures
If variable typed inside closure came from outside the closure, it is captured by
reference

Immutable if possible, mutable if necessary

let z = 5;
let closure = |x| z == x;

This can’t be done with functions! Will fail to compile:

fn f(x: i32) -> bool { z == x }

Jack Duvall Ownership and Function Types 4th February 2022 41 / 55

Consuming State With Closures
Sometimes, we do want to move a value into a closure:

let message = String::from("hello");
thread::spawn(move || {

println!("{}", message);
});

move keyword: anything that would be captured by reference is now captured by value
(moved)

Jack Duvall Ownership and Function Types 4th February 2022 42 / 55

Consuming State With Closures
Sometimes, we do want to move a value into a closure:

let message = String::from("hello");
thread::spawn(move || {

println!("{}", message);
});

move keyword: anything that would be captured by reference is now captured by value
(moved)

Jack Duvall Ownership and Function Types 4th February 2022 42 / 55

Things Closures Can’t Be
Recursive
Generic
In most cases, function pointers

If a closure doesn’t capture anything from its environment, it can be coerced to a
function pointer:

let x: fn(i32, i32) -> i32 = |x, y| x + y;

Jack Duvall Ownership and Function Types 4th February 2022 43 / 55

Type Of A Closure
You can’t write down their type!
Wait, so how can we take them as arguments??

Jack Duvall Ownership and Function Types 4th February 2022 44 / 55

Function Traits

Jack Duvall Ownership and Function Types 4th February 2022 45 / 55

Traits Aren’t Types
Types: correspond to the compiler’s representation of data
Traits: describe what a type can do
More about this next lecture

Jack Duvall Ownership and Function Types 4th February 2022 46 / 55

Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference
Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn

Jack Duvall Ownership and Function Types 4th February 2022 47 / 55

Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}

Jack Duvall Ownership and Function Types 4th February 2022 48 / 55

Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}

Jack Duvall Ownership and Function Types 4th February 2022 48 / 55

Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}

Jack Duvall Ownership and Function Types 4th February 2022 48 / 55

Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}

Jack Duvall Ownership and Function Types 4th February 2022 48 / 55

FnMut Trait
let mut state = 0;
let fnmut_closure = |x| {

state += x;
state

};

Can be called by mutable reference
Closure must not move any captured state out

Jack Duvall Ownership and Function Types 4th February 2022 49 / 55

Example: Using FnMut
fn giveme_fnmut(mut f: impl FnMut(i32) -> i32) -> i32 {

let x = f(42);
f(x)

}
assert_eq!(giveme_fnmut(fnmut_closure), 84);

Jack Duvall Ownership and Function Types 4th February 2022 50 / 55

Example: Using FnMut
fn giveme_fnmut(mut f: impl FnMut(i32) -> i32) -> i32 {

let x = f(42);
f(x)

}
assert_eq!(giveme_fnmut(fnmut_closure), 84);

Jack Duvall Ownership and Function Types 4th February 2022 50 / 55

FnOnce Trait
let state = Box::new(42);
let fnonce_closure = move |x| {

let y = x + *state;
drop(state);
y

};

Can be called by taking ownership of the closure
All closures implement this

Jack Duvall Ownership and Function Types 4th February 2022 51 / 55

Example: Using FnOnce
fn giveme_fnonce(f: impl FnOnce(i32) -> i32) -> i32 {

let x = f(42);
// let y = f(9 * 6); // Does not compile
x

}

Jack Duvall Ownership and Function Types 4th February 2022 52 / 55

Why Are There So Many Different Traits??
Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”
FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”
FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list

Jack Duvall Ownership and Function Types 4th February 2022 53 / 55

Homework

Jack Duvall Ownership and Function Types 4th February 2022 54 / 55

Function Type Puzzle
https://github.com/Rust-Stuco/puzzles/tree/main/03_function_types

Jack Duvall Ownership and Function Types 4th February 2022 55 / 55

https://github.com/Rust-Stuco/puzzles/tree/main/03_function_types

	Ownership
	Borrowing
	Lifetimes
	Function Types
	Function Pointers
	Closures
	Function Traits
	Homework

