
Ownership and Function Types
also to include lifetimes, more borrow checker rules,
and closures
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Recall: Stack and Heap
Regions of memory you can store data in
Stack:

Local to current function invocation
Data must have known size at compile time
Automatically freed when function exits

Heap:
Entire program can view
Data can have unknown size
Must allocate and free ”manually”
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Definitions
Value: “The literal bits in memory somewhere”
Variable: “The label for those bits at any given moment”

// The variable x has a value of 98008
let x = 98008;
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More Definitions
Scope: “A set of {}”
Dropping: “Making a value inaccessible”

e.g. popping stack frame or calling free()

fn f() { // x is scoped to f
let x = String::from("hello");
drop(x); // x is manually dropped

}
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Ownership Rules
From https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html
Each value in Rust has a single variable called its owner.
There can only be one owner at a time.
When the owner exits its scope, the value will be dropped.
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Upcoming Ownership Examples
Simple Move
Simple Copy
Move Into Function
Copy Into Function
Cloning
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Ownership Example: Simple Move
let s1 = String::from("hello");
let s2 = s1; // `s2` now "owns" the data that `s1` used to refer to
println!("{}", s1); // So this is an error
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Ownership Example: Simple Move
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Ownership Example: Simple Copy
let x = 5;
let y = x; // `x` can be copied efficiently, so the data is just

// copied into `y`
println!("{}", x); // This is OK
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Ownership Example: Move Into Function
fn take_ownership(y: String) { println!("{}", y); }
fn main() {

let x = String::from("hello");
take_ownership(x);
// using `x` is an error here, because `take_ownership` took
// ownership, so `x`'s value is somewhere else

}
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Ownership Example: Copy Into Function
fn makes_copy(y: i32) { println!("{}", y); }
fn main() {

let x = 5;
makes_copy(x);
// Passing `x` into `makes_copy` made a copy of `x`'s value,
// so `x` still has ownership

}
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Ownership: Cloning
What if you have data that can’t be automatically copied, but you still want a
copy?
Solution: .clone() the data!

let s1 = String::from("hello");
let s2 = s1.clone();
// `s1` and `s2` refer to different memory locations now
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Ownership: Cloning: Diagram
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When Can I Copy Or Clone?
Copy: whenever a type implements the Copy trait!
Clone: whenever a type implements the Clone trait!
We’ll get into traits more next lecture
Important: the programmer implementing the struct decides if/how these
operations are allowed

Restriction on Copy: every field/variant must be Copy
If something is Copy, it must also be Clone
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Borrowing
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References: Pointers But Better
Reference: “You don’t own this value, but you can still access it”

Value is called ”borrowed”
Two types: Immutable and Mutable
Guarantee: it’s always valid to access memory through a reference!

Not the case with pointers
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Immutable References
&Ty

Only let you read
Any number can exist at one point, so long as there’s no mutable references to
the object at the same time.
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Immutable References: Example
let x: i32 = 5;
let x_ref: &i32 = &x;
let x_ref2: &i32 = &x; // Ok to have more than one immutable ref
let x_ref3: &i32 = x_ref; // Immutable reference is `Copy`
let y: i32 = *x_ref; // Ok, `i32` is `Copy`
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Mutable References
&mut Ty

Let you read and write
Can only be made if the underlying object is also mutable
Only one can exist at a time
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Mutable References: Example
let x: i32 = 5;
let x_mut_ref: &mut i32 = &mut x; // Does not compile, `x` is not

// `mut`
let mut y: i32 = 6;
let y_mut_ref: &mut i32 = &mut y;
let y_mut_ref2: &mut i32 = &mut y; // Does not compile, can't

// have more than one mut ref
let y_mut_ref3: &mut i32 = y_mut_ref; // Does not compile, mut

// refs aren't `Copy`
*y_mut_ref += 2;
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Lifetimes
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Why Do We Need Lifetimes?
To know how long a reference is valid for!
Lifetime: “For a variable, the span of time that it owns a value”
Roughly corresponds to the scope of the variable
Construct of Rust’s borrow checker, not checked at runtime!
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Lifetimes Roughly Correspond To Scope
fn main() {

let x_ref1 = &x; // Does not compile, can't reference `x`
// before it's defined

let x = String::from("hello");
let x_ref2 = &x;
take_ownership(x);
let x_ref3 = &x; // Does not compile, `x`'s value has been

// moved out, no longer in this scope
}
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Returning Invalid Reference
fn make_string() -> &String {

let s = String::from("hello");
&s

}

Scope of s is the function body of make_string, which is the same as its lifetime
Compiler knows lifetime of make_string will end once it returns, so reference
won’t be valid
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Fixing The Example: Use Moves
Just don’t return a reference! Move semantics already avoid copying things on the
heap when not necessary

fn make_string() -> String {
let s = String::from("hello");
s

}
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Denoting Lifetimes
&'a Ty
&'a mut Ty

The 'a is the lifetime name. The ' is required, and the identifier can be any
contiguous word1.
The 'static lifetime is special: denotes “will be valid until the program
terminates”
Rare you’ll need to denote explicitly, but sometimes necessary for:

Structs/Enums with references inside them
Functions taking in those structs/enums
Other, more funky functions

1Looking at you, SML
Jack Duvall Ownership and Function Types 4th February 2022 26 / 55



Explicit Lifetimes In Structs
struct Vertex<'a> {

edges: Vec<&'a Edge<'a>>,
}
struct Edge<'a> {

info: EdgeInfo,
vertex: &'a Vertex<'a>,

}
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Explicit Lifetimes In Function Signatures
fn bfs<'a>(

start_vertex: &'a Vertex<'a>,
max_depth: usize,

) -> Vec<&'a Vertex<'a>> {
…

}
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Rules For Lifetimes In Function Signatures
(From https://doc.rust-lang.org/rust-by-example/scope/lifetime/fn.html) Function
signatures follow these rules:

any reference must have an annotated lifetime
any reference being returned must have the same lifetime as an input, or be
'static

fn f1<'a, 'b>(x: &'a i32, y: &'b i32) -> &'a i32 {
// what goes here?

}
fn f2<'a, 'b>(x: &'a i32) -> &'b i32 {

// what goes here?
}
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Lifetime Elison
Wait, didn’t we forget to write these explicit lifetimes last lecture??
Certain patterns in Rust are very common:

// One input lifetime, return value is reference
fn f3<'a>(x: &'a i32) -> &'a i32 { ... }
// Multiple input lifetimes, return value is not reference
fn f4<'a, 'b, 'c>(x: &'a i32, y: &'b i32, z: &'c i32) -> i32 { ... }

So if it falls into one of these patterns, you don’t have to explicitly write them
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Fixing The Example Again: Allocators
fn make_string(allocator: &mut Vec<String>) -> &String {

allocator.push(String::from("hello"));
&allocator[allocator.len() - 1]

}

Input and Output lifetimes elided to be the same
Valid reference returned via reference to original data

Jack Duvall Ownership and Function Types 4th February 2022 31 / 55



Not Actually Lifetimes: Loop Labels
'outer: for y in 0..5 {

'inner: for x in 0..5 {
if arr1[y][x] { break 'outer; }
if arr2[x][y] { break 'inner; }

}
}

Same syntax as lifetimes, and same sort of scope idea, but you can’t actually make
references with these names and have it make sense
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Function Types
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What Are Function Types?
Every value has a type
Functions are Values! (sorry 15-122 stans)
Allows us to pass in functions as arguments to other functions, which many other
good languages do in some capacity
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Rust’s Function Types
Function Pointers (sorry 15-150 stans): fn (Ty1, Ty2, ...) -> Ty
Function Traits:

Fn
FnOnce
FnMut
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Function Pointers

Jack Duvall Ownership and Function Types 4th February 2022 36 / 55



Attributes Of A Function Pointer
Value of the function pointer type is either:

A “function item” (named function in the code), or
A closure that doesn’t capture (which is effectively the same)
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Example: Using A Function Pointer
fn double(n: i32) -> i32 { 2 * n }
fn giveme_fnptr(f: fn(i32) -> i32) -> i32 {

f(42)
}
fn test_fnptr() {

assert_eq!(giveme_fnptr(double), 84);
}
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Closures
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Closure Syntax
From https://doc.rust-lang.org/book/ch13-01-closures.html

fn add_one_v1 (x: i32) -> i32 { x + 1 }
let add_one_v2 = |x: i32| -> i32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;
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Capturing State With Closures
If variable typed inside closure came from outside the closure, it is captured by
reference

Immutable if possible, mutable if necessary

let z = 5;
let closure = |x| z == x;

This can’t be done with functions! Will fail to compile:

fn f(x: i32) -> bool { z == x }
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Consuming State With Closures
Sometimes, we do want to move a value into a closure:

let message = String::from("hello");
thread::spawn(move || {

println!("{}", message);
});

move keyword: anything that would be captured by reference is now captured by value
(moved)
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Things Closures Can’t Be
Recursive
Generic
In most cases, function pointers

If a closure doesn’t capture anything from its environment, it can be coerced to a
function pointer:

let x: fn(i32, i32) -> i32 = |x, y| x + y;
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Type Of A Closure
You can’t write down their type!
Wait, so how can we take them as arguments??
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Function Traits
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Traits Aren’t Types
Types: correspond to the compiler’s representation of data
Traits: describe what a type can do
More about this next lecture
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Fn Trait
let fn_closure = |x| 2 * x;

We say: fn_closure implements Fn(i32) -> i32
Can be called by shared reference
Closure must:

Not mutate any captured state
Not move any captured state out

All (safe) function pointers also implement Fn
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Example: Using Fn
fn giveme_fn1(f: impl Fn(i32) -> i32) -> i32 {

f(42)
}
// Or, verbosely:
fn giveme_fn2<T: Fn(i32) -> i32>(f: T) -> i32 {

f(42)
}
// Or, even more verbosely:
fn giveme_fn3<T>(f: T) -> i32

where T: Fn(i32) -> i32
{

f(42)
}
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FnMut Trait
let mut state = 0;
let fnmut_closure = |x| {

state += x;
state

};

Can be called by mutable reference
Closure must not move any captured state out
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Example: Using FnMut
fn giveme_fnmut(mut f: impl FnMut(i32) -> i32) -> i32 {

let x = f(42);
f(x)

}
assert_eq!(giveme_fnmut(fnmut_closure), 84);
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FnOnce Trait
let state = Box::new(42);
let fnonce_closure = move |x| {

let y = x + *state;
drop(state);
y

};

Can be called by taking ownership of the closure
All closures implement this
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Example: Using FnOnce
fn giveme_fnonce(f: impl FnOnce(i32) -> i32) -> i32 {

let x = f(42);
// let y = f(9 * 6); // Does not compile
x

}
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Why Are There So Many Different Traits??
Need to distinguish between all the different ways we can capture state, interact
with borrow/ownership system!

Fn: “This acts like a function pointer, doesn’t modify any local state”
FnMut: “This may modify local state, but doesn’t result in any local state being
dropped when called”
FnOnce: “This can only be called 0 or 1 times because it may drop local state when
called.”

Anything higher on the list can be used as anything lower on the list
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Homework
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Function Type Puzzle
https://github.com/Rust-Stuco/puzzles/tree/main/03_function_types
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