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Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:

Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety
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void increment(void *n) {
*(int*)n += 1;

}

... but what if I wanted a version for shorts, longs, and so on?

#define increment(x) _Generic((x), \
short: incr_short, \
int: incr_int, \
long: incr_long, \
float: incr_f, \
long double: incr_ld)(x)
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Another try

fun 'a id (x : 'a) : 'a = x

Now, properly generic.

(and we only had to switch languages)
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In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}
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Aside: C++ Templates
template<typename T>
T id(T x) {

return x;
}

Similar, but not the same.
Both languages will “monomorphise” this, making a separate version of the
function for all of the types it’s used on.
But in Rust, we typecheck the whole function, not just instances.
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Ownership Semantics with Generic Functions
These are still the same as before:

If the type is Copy, then its copied.
Otherwise, its moved.

fn main() {
let x = 7;
let y = String::from("Hello!");
let z = id(x);
let w = id(y);
println!("{}, {}, {}, {}", x, y, z, w);

}
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Generic Data Structures
So we can be generic over data in our functions, but what about elsewhere?

struct Queue<T> {
in_stack: Vec<T>,
out_stack: Vec<T>,

}

enum Option<T> {
Some(T),
None,

}
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Aside: Common Parametric Enums
enum Option<T> {

Some(T),
None,

}

enum Result<T, E> {
Ok(T),
Err(E),

}
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Lifetime Genericity: Functions
Recall from last time that we can do the same with lifetimes

fn saxpy<'a, 'b>(
a: f32, x: &'a [f32], y: &'b mut [f32]

) -> &'b mut [f32] {
for (yi, xi) in y.iter_mut().zip(x) {

*yi = a * xi + *yi;
}
y

}
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Lifetime Genericity: Data
We can also do this with our data, and don’t benefit from lifetime elision here.

enum CopyOnWrite<'a, T> {
Borrowed(&'a T),
Owned(T),

}

struct Token<'a> {
range: (usize, usize),
text: &'a str,

}
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Lifetime Genericity: Data
enum CopyOnWrite<'a, T> { Borrowed(&'a T), Owned(T), }

impl<'a, T> CopyOnWrite<'a, T> {
fn to_mut(&mut self) -> &mut T {

match self {
Self::Borrowed(&b) => {

*self = Self::Owned(b);
self.to_mut()

}
Self::Owned(b) => b,

}
}

}
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Trait Bound Preview
enum CopyOnWrite<'a, T> { Borrowed(&'a T), Owned(T), }

impl<'a, T: Copy> CopyOnWrite<'a, T> {
fn to_mut(&mut self) -> &mut T {

match self {
Self::Borrowed(&b) => {

*self = Self::Owned(b);
self.to_mut()

}
Self::Owned(b) => b,

}
}

}
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Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses
ML—modules
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Traits
In Rust, we use a Trait for this.

trait Eq {
fn eq(&self, other: &Self) -> bool;

}

trait Bounds {
fn min() -> Self; // Note the capitalisation!

fn max() -> Self;
}
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Implementing a Trait
Types can then implement traits:

impl PartialEq for (i32, i32) {
fn eq(&self, other: &foo) -> bool {

self.0 == other.0 && self.1 == other.1
}

}

impl Bounds for u8 {
fn min() -> u8 { 0 }
fn max() -> u8 { 255 }

}
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Aside: Derive for Implementing Traits
Oftentimes we avoid this for common, boilerplate heavy traits using an “attribute
macro”1.

#[derive(Debug, PartialEq, Eq)]
struct Person {

name: String,
age: u8,

}

Derivable traits include: Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy,
Hash, and more.

1we’ll revisit this in more depth in 6 weeks or so
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Using Trait Implementations
Using a trait implementations is as simple as ensuring the trait is in scope, and just
calling the method.

trait ToString { fn to_string(&self) -> String; }
impl ToString for i32 { /* omitted */ }

fn main() {
let s = 7.to_string();
println!("{}", s);

}
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Default Implementations
Traits can also include default implementations for their items

enum SeekFrom { Start(u64), End(i64), Current(i64), }

/// This trait provides a cursor which can be moved
/// within a stream of bytes.
trait Seek {

fn seek(&mut self, pos: SeekFrom) -> Result<(), u64>;
fn rewind(&mut self) -> Result<(), ()> {

match self.seek(SeekFrom::Start(0)) {
Err(e) => Err(e),
Ok(_) => Ok(()),

}
}

}
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Type Parameters for Traits
And much like types, Traits can have type parameters

trait From<T> {
fn from(T) -> Self;

}

impl From<u8> for i32 { fn from(x: u8) -> i32 { x as i32 } }
impl From<u16> for i32 { fn from(x: u16) -> i32 { x as i32 } }
impl From<i8> for i32 { fn from(x: i8) -> i32 { x as i32 } }
impl From<i16> for i32 { fn from(x: i16) -> i32 { x as i32 } }
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Associated Types
trait Iterator {

type Item;

fn next(&mut self) -> Option<Self::Item>;

fn nth(&mut self, n: usize) -> Option<Self::Item> {
for _ in 0..n {

self.next()?;
}
self.next()

}
}

Note that we can only implement this once for a given type, with some fixed type for
Item—if many possible types make sense, we should use a type parameter.
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Genericity with Trait Bounds
We can use traits as bounds for our type parameters!

fn find_diff<'a, 'b, T: Eq>(
xs: &'a [T], ys: &'b [T]

) -> Option<(&'a T, &'b T)> {
for (x, y) in xs.iter().zip(ys) {

if x != y { return Some((x, y)); }
}
None

}
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Aside: Lifetime Subtyping
fn find_same<'a, T: Eq>(xs: &'a [T], ys: &'a [T]) -> Option<&'a T> {

for (x, y) in xs.iter().zip(ys) {
if x == y {

return Some(x);
}

}
None

}

Can I use this on any two slices? Do they have to have the exact same lifetime?

No—they can have different ones, and 'a will be the “shared” lifetime.
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Verbose Bounds
Sometimes there can be quite a few constraints, or some complex combination:

fn double<T>(x: T) -> T
where

T: Add<T, Output = T> + Copy,
{

x + x
}
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Trait Objects: dyn
When we use traits in a type parameter bound, we’re still monomorphising. What if we
want dynamic dispatch?

trait Button {
fn on_click(&self, s: State) -> State;

}

fn handle_click_events(
clicked: &[Box<dyn Button>], mut s: State

) -> State {
for b in clicked {

s = b.on_click(b);
}
s

}
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Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]
dyn Trait
str (like [u8] but UTF-8)

If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...
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As a return type
Sometimes we might want to return a specific type which implements a trait, but don’t
want users of our function to know:

enum Tree<T> { Leaf(T), Node(Box<Tree<T>, T, Box<Tree<T>>) }

struct Leaves { /* omitted */ }
impl Iterator for Leaves { /* omitted */ }

fn leaf_values<T>(tree: &Tree<T>) -> impl Iterator<Item = &T> {
Leaves { tree, current: tree.leftmost() };

}

Cooper Pierce Polymorphism in Rust 10th February 2022 31 / 32



As a argument’s type
This will end up being equivalent to a bound on a type parameter:

fn use_fn<T, U>(x: T, f: impl Fn(T) -> U) -> U {
f(x)

}

is the same as

fn use_fn<T, U, F: Fn (T) -> U>(x: T, f: F) -> U {
f(x)

}

((∃x.P (x)) → Q) ⇐⇒ (∀x. (P (x) → Q))
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