
Polymorphism in Rust
Traits and Big Lambda

Cooper Pierce



Table of Contents

1 Genericity

2 (Unbounded) Parametric Polymorphism

3 Ad-hoc Polymorphism and Traits

4 Bounded Parametric Polymorphism
Trait Objects

5 Existential Types

Cooper Pierce Polymorphism in Rust 10th February 2022 1 / 32



Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:

Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce Polymorphism in Rust 10th February 2022 2 / 32



Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:

Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce Polymorphism in Rust 10th February 2022 2 / 32



Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:

Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce Polymorphism in Rust 10th February 2022 2 / 32



Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:
Can only portably use pointers (often violated)

Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce Polymorphism in Rust 10th February 2022 2 / 32



Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:
Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...

No type-safety

Cooper Pierce Polymorphism in Rust 10th February 2022 2 / 32



Generic Code
How would we do it in C?

void *id(void *x) {
return x;

}

Issues:
Can only portably use pointers (often violated)
Normal pointer-related issues in C: null pointers, alignment issues etc...
No type-safety

Cooper Pierce Polymorphism in Rust 10th February 2022 2 / 32



void increment(void *n) {
*(int*)n += 1;

}

... but what if I wanted a version for shorts, longs, and so on?

#define increment(x) _Generic((x), \
short: incr_short, \
int: incr_int, \
long: incr_long, \
float: incr_f, \
long double: incr_ld)(x)

Cooper Pierce Polymorphism in Rust 10th February 2022 3 / 32



void increment(void *n) {
*(int*)n += 1;

}

... but what if I wanted a version for shorts, longs, and so on?

#define increment(x) _Generic((x), \
short: incr_short, \
int: incr_int, \
long: incr_long, \
float: incr_f, \
long double: incr_ld)(x)

Cooper Pierce Polymorphism in Rust 10th February 2022 3 / 32



void increment(void *n) {
*(int*)n += 1;

}

... but what if I wanted a version for shorts, longs, and so on?

#define increment(x) _Generic((x), \
short: incr_short, \
int: incr_int, \
long: incr_long, \
float: incr_f, \
long double: incr_ld)(x)

Cooper Pierce Polymorphism in Rust 10th February 2022 3 / 32



Another try

fun 'a id (x : 'a) : 'a = x

Now, properly generic.

(and we only had to switch languages)

Cooper Pierce Polymorphism in Rust 10th February 2022 4 / 32



Another try

fun 'a id (x : 'a) : 'a = x

Now, properly generic. (and we only had to switch languages)

Cooper Pierce Polymorphism in Rust 10th February 2022 4 / 32



Table of Contents

1 Genericity

2 (Unbounded) Parametric Polymorphism

3 Ad-hoc Polymorphism and Traits

4 Bounded Parametric Polymorphism
Trait Objects

5 Existential Types

Cooper Pierce Polymorphism in Rust 10th February 2022 5 / 32



In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}

Cooper Pierce Polymorphism in Rust 10th February 2022 6 / 32



In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}

Cooper Pierce Polymorphism in Rust 10th February 2022 6 / 32



In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}

Cooper Pierce Polymorphism in Rust 10th February 2022 6 / 32



In Rust
fn id<T>(x: T) -> T {

x
}

What about this?

fn double<T>(x: T) -> T {
x + x

}

fn main() {
println!("{}", double(7));

}

Cooper Pierce Polymorphism in Rust 10th February 2022 6 / 32



Aside: C++ Templates
template<typename T>
T id(T x) {

return x;
}

Similar, but not the same.
Both languages will “monomorphise” this, making a separate version of the
function for all of the types it’s used on.
But in Rust, we typecheck the whole function, not just instances.

Cooper Pierce Polymorphism in Rust 10th February 2022 7 / 32



Ownership Semantics with Generic Functions
These are still the same as before:

If the type is Copy, then its copied.
Otherwise, its moved.

fn main() {
let x = 7;
let y = String::from("Hello!");
let z = id(x);
let w = id(y);
println!("{}, {}, {}, {}", x, y, z, w);

}

Cooper Pierce Polymorphism in Rust 10th February 2022 8 / 32



Generic Data Structures
So we can be generic over data in our functions, but what about elsewhere?

struct Queue<T> {
in_stack: Vec<T>,
out_stack: Vec<T>,

}

enum Option<T> {
Some(T),
None,

}

Cooper Pierce Polymorphism in Rust 10th February 2022 9 / 32



Aside: Common Parametric Enums
enum Option<T> {

Some(T),
None,

}

enum Result<T, E> {
Ok(T),
Err(E),

}

Cooper Pierce Polymorphism in Rust 10th February 2022 10 / 32



Lifetime Genericity: Functions
Recall from last time that we can do the same with lifetimes

fn saxpy<'a, 'b>(
a: f32, x: &'a [f32], y: &'b mut [f32]

) -> &'b mut [f32] {
for (yi, xi) in y.iter_mut().zip(x) {

*yi = a * xi + *yi;
}
y

}

Cooper Pierce Polymorphism in Rust 10th February 2022 11 / 32



Lifetime Genericity: Data
We can also do this with our data, and don’t benefit from lifetime elision here.

enum CopyOnWrite<'a, T> {
Borrowed(&'a T),
Owned(T),

}

struct Token<'a> {
range: (usize, usize),
text: &'a str,

}

Cooper Pierce Polymorphism in Rust 10th February 2022 12 / 32



Lifetime Genericity: Data
We can also do this with our data, and don’t benefit from lifetime elision here.

enum CopyOnWrite<'a, T> {
Borrowed(&'a T),
Owned(T),

}

struct Token<'a> {
range: (usize, usize),
text: &'a str,

}

Cooper Pierce Polymorphism in Rust 10th February 2022 12 / 32



Lifetime Genericity: Data
enum CopyOnWrite<'a, T> { Borrowed(&'a T), Owned(T), }

impl<'a, T> CopyOnWrite<'a, T> {
fn to_mut(&mut self) -> &mut T {

match self {
Self::Borrowed(&b) => {

*self = Self::Owned(b);
self.to_mut()

}
Self::Owned(b) => b,

}
}

}

Cooper Pierce Polymorphism in Rust 10th February 2022 13 / 32



Trait Bound Preview
enum CopyOnWrite<'a, T> { Borrowed(&'a T), Owned(T), }

impl<'a, T: Copy> CopyOnWrite<'a, T> {
fn to_mut(&mut self) -> &mut T {

match self {
Self::Borrowed(&b) => {

*self = Self::Owned(b);
self.to_mut()

}
Self::Owned(b) => b,

}
}

}

Cooper Pierce Polymorphism in Rust 10th February 2022 14 / 32



Table of Contents

1 Genericity

2 (Unbounded) Parametric Polymorphism

3 Ad-hoc Polymorphism and Traits

4 Bounded Parametric Polymorphism
Trait Objects

5 Existential Types

Cooper Pierce Polymorphism in Rust 10th February 2022 15 / 32



Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses
ML—modules

Cooper Pierce Polymorphism in Rust 10th February 2022 16 / 32



Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces

Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses
ML—modules

Cooper Pierce Polymorphism in Rust 10th February 2022 16 / 32



Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes

C++20—concepts
Haskell—typeclasses
ML—modules

Cooper Pierce Polymorphism in Rust 10th February 2022 16 / 32



Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts

Haskell—typeclasses
ML—modules

Cooper Pierce Polymorphism in Rust 10th February 2022 16 / 32



Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses

ML—modules

Cooper Pierce Polymorphism in Rust 10th February 2022 16 / 32



Genericity with Behaviour?
How do we describe a set of behaviours?

Java, C#—interfaces
Plenty of things—abstract classes
C++20—concepts
Haskell—typeclasses
ML—modules

Cooper Pierce Polymorphism in Rust 10th February 2022 16 / 32



Traits
In Rust, we use a Trait for this.

trait Eq {
fn eq(&self, other: &Self) -> bool;

}

trait Bounds {
fn min() -> Self; // Note the capitalisation!

fn max() -> Self;
}

Cooper Pierce Polymorphism in Rust 10th February 2022 17 / 32



Traits
In Rust, we use a Trait for this.

trait Eq {
fn eq(&self, other: &Self) -> bool;

}

trait Bounds {
fn min() -> Self; // Note the capitalisation!

fn max() -> Self;
}

Cooper Pierce Polymorphism in Rust 10th February 2022 17 / 32



Traits
In Rust, we use a Trait for this.

trait Eq {
fn eq(&self, other: &Self) -> bool;

}

trait Bounds {
fn min() -> Self; // Note the capitalisation!

fn max() -> Self;
}

Cooper Pierce Polymorphism in Rust 10th February 2022 17 / 32



Implementing a Trait
Types can then implement traits:

impl PartialEq for (i32, i32) {
fn eq(&self, other: &foo) -> bool {

self.0 == other.0 && self.1 == other.1
}

}

impl Bounds for u8 {
fn min() -> u8 { 0 }
fn max() -> u8 { 255 }

}

Cooper Pierce Polymorphism in Rust 10th February 2022 18 / 32



Aside: Derive for Implementing Traits
Oftentimes we avoid this for common, boilerplate heavy traits using an “attribute
macro”1.

#[derive(Debug, PartialEq, Eq)]
struct Person {

name: String,
age: u8,

}

Derivable traits include: Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy,
Hash, and more.

1we’ll revisit this in more depth in 6 weeks or so
Cooper Pierce Polymorphism in Rust 10th February 2022 19 / 32



Using Trait Implementations
Using a trait implementations is as simple as ensuring the trait is in scope, and just
calling the method.

trait ToString { fn to_string(&self) -> String; }
impl ToString for i32 { /* omitted */ }

fn main() {
let s = 7.to_string();
println!("{}", s);

}

Cooper Pierce Polymorphism in Rust 10th February 2022 20 / 32



Default Implementations
Traits can also include default implementations for their items

enum SeekFrom { Start(u64), End(i64), Current(i64), }

/// This trait provides a cursor which can be moved
/// within a stream of bytes.
trait Seek {

fn seek(&mut self, pos: SeekFrom) -> Result<(), u64>;
fn rewind(&mut self) -> Result<(), ()> {

match self.seek(SeekFrom::Start(0)) {
Err(e) => Err(e),
Ok(_) => Ok(()),

}
}

}

Cooper Pierce Polymorphism in Rust 10th February 2022 21 / 32



Type Parameters for Traits
And much like types, Traits can have type parameters

trait From<T> {
fn from(T) -> Self;

}

impl From<u8> for i32 { fn from(x: u8) -> i32 { x as i32 } }
impl From<u16> for i32 { fn from(x: u16) -> i32 { x as i32 } }
impl From<i8> for i32 { fn from(x: i8) -> i32 { x as i32 } }
impl From<i16> for i32 { fn from(x: i16) -> i32 { x as i32 } }

Cooper Pierce Polymorphism in Rust 10th February 2022 22 / 32



Associated Types
trait Iterator {

type Item;

fn next(&mut self) -> Option<Self::Item>;

fn nth(&mut self, n: usize) -> Option<Self::Item> {
for _ in 0..n {

self.next()?;
}
self.next()

}
}

Note that we can only implement this once for a given type, with some fixed type for
Item—if many possible types make sense, we should use a type parameter.
Cooper Pierce Polymorphism in Rust 10th February 2022 23 / 32



Table of Contents

1 Genericity

2 (Unbounded) Parametric Polymorphism

3 Ad-hoc Polymorphism and Traits

4 Bounded Parametric Polymorphism
Trait Objects

5 Existential Types

Cooper Pierce Polymorphism in Rust 10th February 2022 24 / 32



Genericity with Trait Bounds
We can use traits as bounds for our type parameters!

fn find_diff<'a, 'b, T: Eq>(
xs: &'a [T], ys: &'b [T]

) -> Option<(&'a T, &'b T)> {
for (x, y) in xs.iter().zip(ys) {

if x != y { return Some((x, y)); }
}
None

}

Cooper Pierce Polymorphism in Rust 10th February 2022 25 / 32



Aside: Lifetime Subtyping
fn find_same<'a, T: Eq>(xs: &'a [T], ys: &'a [T]) -> Option<&'a T> {

for (x, y) in xs.iter().zip(ys) {
if x == y {

return Some(x);
}

}
None

}

Can I use this on any two slices? Do they have to have the exact same lifetime?

No—they can have different ones, and 'a will be the “shared” lifetime.

Cooper Pierce Polymorphism in Rust 10th February 2022 26 / 32



Aside: Lifetime Subtyping
fn find_same<'a, T: Eq>(xs: &'a [T], ys: &'a [T]) -> Option<&'a T> {

for (x, y) in xs.iter().zip(ys) {
if x == y {

return Some(x);
}

}
None

}

Can I use this on any two slices? Do they have to have the exact same lifetime?
No—they can have different ones, and 'a will be the “shared” lifetime.

Cooper Pierce Polymorphism in Rust 10th February 2022 26 / 32



Verbose Bounds
Sometimes there can be quite a few constraints, or some complex combination:

fn double<T>(x: T) -> T
where

T: Add<T, Output = T> + Copy,
{

x + x
}

Cooper Pierce Polymorphism in Rust 10th February 2022 27 / 32



Trait Objects: dyn
When we use traits in a type parameter bound, we’re still monomorphising. What if we
want dynamic dispatch?

trait Button {
fn on_click(&self, s: State) -> State;

}

fn handle_click_events(
clicked: &[Box<dyn Button>], mut s: State

) -> State {
for b in clicked {

s = b.on_click(b);
}
s

}

Cooper Pierce Polymorphism in Rust 10th February 2022 28 / 32



Trait Objects: dyn
When we use traits in a type parameter bound, we’re still monomorphising. What if we
want dynamic dispatch?

trait Button {
fn on_click(&self, s: State) -> State;

}

fn handle_click_events(
clicked: &[Box<dyn Button>], mut s: State

) -> State {
for b in clicked {

s = b.on_click(b);
}
s

}

Cooper Pierce Polymorphism in Rust 10th February 2022 28 / 32



Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]
dyn Trait
str (like [u8] but UTF-8)

If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...

Cooper Pierce Polymorphism in Rust 10th February 2022 29 / 32



Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]

dyn Trait
str (like [u8] but UTF-8)

If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...

Cooper Pierce Polymorphism in Rust 10th February 2022 29 / 32



Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]
dyn Trait

str (like [u8] but UTF-8)
If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...

Cooper Pierce Polymorphism in Rust 10th February 2022 29 / 32



Sized and Unsized Types
Most of the types we’ve seen so far are “sized”, meaning we statically know how large
they are.
Some types are “unsized”, meaning we don’t know their size!
Some examples:

[T]
dyn Trait
str (like [u8] but UTF-8)

If we want to use these, they should be through a level of indirection: &T, Box<T>,
etc...

Cooper Pierce Polymorphism in Rust 10th February 2022 29 / 32



Table of Contents

1 Genericity

2 (Unbounded) Parametric Polymorphism

3 Ad-hoc Polymorphism and Traits

4 Bounded Parametric Polymorphism
Trait Objects

5 Existential Types

Cooper Pierce Polymorphism in Rust 10th February 2022 30 / 32



As a return type
Sometimes we might want to return a specific type which implements a trait, but don’t
want users of our function to know:

enum Tree<T> { Leaf(T), Node(Box<Tree<T>, T, Box<Tree<T>>) }

struct Leaves { /* omitted */ }
impl Iterator for Leaves { /* omitted */ }

fn leaf_values<T>(tree: &Tree<T>) -> impl Iterator<Item = &T> {
Leaves { tree, current: tree.leftmost() };

}

Cooper Pierce Polymorphism in Rust 10th February 2022 31 / 32



As a argument’s type
This will end up being equivalent to a bound on a type parameter:

fn use_fn<T, U>(x: T, f: impl Fn(T) -> U) -> U {
f(x)

}

is the same as

fn use_fn<T, U, F: Fn (T) -> U>(x: T, f: F) -> U {
f(x)

}

((∃x.P (x)) → Q) ⇐⇒ (∀x. (P (x) → Q))

Cooper Pierce Polymorphism in Rust 10th February 2022 32 / 32


	Genericity
	(Unbounded) Parametric Polymorphism
	Ad-hoc Polymorphism and Traits
	Bounded Parametric Polymorphism
	Trait Objects

	Existential Types

