
Lec 5: Modules

Jack Duvall

Don't Put Everything In One File!

● Easier to read short files

● Allows code reuse

● Every other modern language has modules (C#, Go, Java, Python,

Typescript, etc.)

What Is A Module?

● "A bag of things that go together"

● Containing any or all of:
○ Structs + Enums

○ Types + Traits

○ Functions

○ Constants

○ Static members

○ Other modules!

A Module Defines A Namespace

● Function in current module: no prefix

● Functions in a different module: `module_name::function_name`
○ Can also have `long::path::to::module_name::function_name`

○ Can prepend with `::` to have an absolute path

● More examples to come

Crates

What Is A Crate?

● Crate: highest level module

● May have modules inside it

● May contain multiple Rust files, as well as associated data

● Similar to packages in other languages

Types of Crates

● Binary

● Library

Binary Crates

● Results in executable you can run

● Crate root: `src/main.rs`

● Has `main` function in that file

● Cannot have integration tests

Library Crates

● Results in something you can link against
○ Link: "I can use some of this code without recompiling"

● Crate root: `src/lib.rs`

● Does not need a `main` function

● Can have integration tests

When To Use Binary vs Library Crates

● Library: Almost Always
○ Can lead to nicer test structuring

○ Easier to reuse code

● Binary: When You Can't Use A Library
○ Often just a wrapper around a core library

Magic Incantations

● `cargo new <name_of_crate>`

● Or, manually:
○ Create a `Cargo.toml` with the appropriate fields

○ Create a `src` directory

○ Create `src/main.rs` for a binary crate

○ Create `src/lib.rs` for a library crate

○ Exclude the `target/` directory in your `.gitignore`

● Very opinionated, names must match exactly!

A Sample `Cargo.toml`

[package]

name = "foobar"

version = "0.1.0"

authors = ["Jack Duvall <jrduvall@andrew.cmu.edu>"]

edition = "2021"

Modules And Files

Modules inline with text

// In `src/lib.rs`:

mod foo { // Now the `foo` module exists, in a

 … // separate namespace from the rest of the
file

}

Directory Structure *Is* Module Structure

● If modules `bar`, `bar::baz`, and `bar::qux` are all modules corresponding to files:

src/

|--lib.rs

|--bar/

 |--mod.rs (bar)

 |--baz.rs (bar::baz)

 |--qux.rs (bar::qux)

Alternatively…

● We can name directories the same as a file for submodules
○ I don't recommend this since what if you rename just one accidentally??

src/

|--lib.rs

|--bar.rs (bar)

|--bar/

 |--baz.rs (bar::baz)

 |--quz.rs (bar::qux)

Using File Modules

// In `src/lib.rs`:

mod bar;

// In `src/bar/mod.rs`:

mod baz;

mod qux;

But I Don't Want My Directories To Represent
My Module Structure!
● First of all, why??
● But also, you can do that: (https://doc.rust-lang.org/reference/items/modules.html)

#[path = "thread_files"]

mod thread {

 // Load the `local_data` module from `thread_files/tls.rs` relative to

 // this source file's directory.

 #[path = "tls.rs"]

 mod local_data;

}

https://doc.rust-lang.org/reference/items/modules.html

Visibility

● By default, everything inside a module is private to that module!
● Can make things visible to other modules using the `pub` keyword:

// In `src/lib.rs`

mod foo {

 pub fn foo() -> usize { 42 }

}

// Calling `foo::foo()` works now! Wouldn't work without
`pub`

Visibility On Other Things

● Structs: fields private by default, need to selectively make them `pub`

too

● Enums: all variants public if the enum is `pub`

● Functions: if the function is `pub`, all arguments type and return type

must also be `pub`

● Traits: all members public if the trait is `pub`

● Modules: only `pub` things inside the module are public

Updating File Module Example

// In `src/lib.rs`:

pub mod bar; // Now `bar` is accessible in this file

// In `src/bar/mod.rs`:

pub mod baz; // Now `bar::baz` is accessible in
`src/lib.rs`

mod qux; // Maybe we want `qux` to stay private to
`bar`! We can do that

`use`ing Modules

The `use` Keyword: Basic Usage

● Typing out full module name every time is hard to read

● Better way:

// In `src/lib.rs`:

use bar::baz::bar_function;

// Now we can just type `bar_function` and it'll use
`bar::baz::bar_function`!

The `use` Keyword: Multiple Things

// In `src/lib.rs`

use bar::{bar_function, baz::baz_function};

// Now we can call `bar_function` and `baz_function`
without the module names!

use foo::*;

// Now we can all any public function from `foo`! Or
`foo`'s modules, types, etc. as if they were in our own
namespace

The `use` Keyword: `self`, `as`

// In `src/lib.rs`:

use std::io::{self, Result as IoResult};

// Now we can call `std::io::method_name` as just
`io::method_name`, and refer to an `std::io::Result` as
an `IoResult`!

Module Path Syntax

In a path that looks like `mod1::mod2::mod3::thing`:

● First, we'll see if there's a module called `mod1` that's a submodule of

the current module

● If so, we'll try to see if it has a submodule called `mod2` that has a

submodule called `mod3` which has something called `thing` inside it

● If not, we'll try to see if there's a crate called `mod1` that (blah blah)
○ To force the use of crates, prefix the path with `::`

The `crate` Keyword

● `crate`: used in module paths to start from the base of the crate, not the
base namespace

● `crate::bar::baz` is the same in `src/lib.rs` and `src/bar/qux.rs`, but just
`bar::baz` is not

// In `src/bar/qux.rs`:

use crate::bar::baz::*; // Uses things from bar::baz

use bar::baz::*; // Uses things from
`bar::qux::bar::baz`, not what you wanted probably!

`pub` and `use` together: Re-Exports

● Often, key types are scattered throughout modules

● Pain to include them all manually, better to have a "prelude" that

includes them all for you and re-exports them:

// In `src/bar/prelude.rs`:

pub use crate::bar::{bar_function, baz::baz_function};

// Now, doing `use bar::prelude::*;` in `src/lib.rs`
will give us `bar_function` and `baz_function`

More Complex Visibility: `pub` With Parens

Visible: "A module or any descendant module can reference this item"

`pub` by default: visible to any external module

`pub(crate)`: visible to any other module in the crate

`pub(super)`: visible to the parent module

`pub(in path)` where path is a module path starting with `crate`, `super`, or `self`:
visible to that module

See https://doc.rust-lang.org/reference/visibility-and-privacy.html for more details

https://doc.rust-lang.org/reference/visibility-and-privacy.html

Using Crates

Cargo Is Your Friend

● In your `Cargo.toml`:

[dependencies]

clap = "2.33" # Remote crates just need version number

test_utils = { path = "../test_utils/" } # Local crates
can have a path specified

regex = { git = "https://github.com/rust-lang/regex",
branch = "next" } # Can also specify remote crates from
a git repository

Same Usage As Before!

// In any `*.rs` file in the crate:

type App = clap::App;

fn main() { test_utils::run_tests(App); }

// Or:

use clap::App;

use test_utils::run_tests;

fn main() { run_tests(App); }

Aside: SemVer

● SemVer: "Semantic Versioning".

● `<major_version>.<minor_version>.<patch_number>`

● Major Version:
○ Completely different API/functionality, considerable effort to upgrade from previous

major version

● Minor Version:
○ Some API/functionality has changed, but probably not enough that most people need

to rewrite their code.

● Patch Version:
○ Hardly any API/functionality changes, except for bug fixes

Other Version Number Tricks

● Carat Requirements: "Don't upgrade past the next big version"
○ "^1.2.3" := >=1.2.3, <2.0.0
○ "^0.2" := >=0.2.0, <0.3.0

● Tilde Requirements: "Only allow smaller changes"
○ "~1.2.3" := >=1.2.3, <1.3.0
○ "~1.2" := >=1.2.0, <1.3.0
○ "~1" := >=1.0.0, <2.0.0

● Wildcard Requirements: "Any number in that spot is allowed"
○ "1.*" := >=1.0.0, <2.0.0
○ "1.2.*" := >=1.2.0, <1.3.0

This Doesn't Nearly Cover Everything

● See

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.ht

ml for the full specification about how you can specify dependencies in

Cargo.toml.

● Mostly just use `<major>.<minor>` versions, everything else is more

rare

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html

Aside: The Orphan Rule

● "Can't implement foreign traits on foreign types"

● Foreign = not in this crate. Types/traits from different modules inside a

crate are OK

● Why not? So that there is only ever one trait implementation for a given

type: "coherence"

Getting Around The Orphan Rule: Local Type

use other_crate::{ForeignTrait, ForeignType};

struct LocalType(ForeignType);

impl ForeignTrait for LocalType {

 // Use self.0 to get at the ForeignType value

}

Features

How Can We Split Out Functionality?

Scenario: you want to implement traits exported by a large library

● Don't want to force all users to import the library

● Can't split into two crates, since some types must be private, plus it's

not feasible to implement foreign traits on foreign types

Are we just stuck?

Scenario Code

use serde::Deserialize;

#[derive(Deserialize)]

struct PrivateState;

#[derive(Deserialize)]

pub struct PublicData {

 state: PrivateState,

}

Features To The Rescue!

● Features let you conditionally compile/declare things
○ Structs, enums, constants, traits, functions entire modules!

#[cfg(feature = "serde_impl")]

mod serde_impl {

 use serde;

 // trait impls

}

Declaring What Features Exist

// In Cargo.toml for my-library

[features]

serde_impl = ["serde", "some_other_feature"]

some_other_feature = []

[dependencies]

serde = "1.0"

Enabling Features On Dependencies

// In Cargo.toml for my-binary

[dependencies]

my-library = {

 version = "0.1",

 features = ["serde_impl"],

}

TOML Syntax For Lots Of Features

[dependencies.windows]
version = "0.29.0"
features = [

"alloc",
"Win32_Foundation",
"Win32_Security",
"Win32_System_Threading",
"Win32_System_Console",
"Win32_System_Pipes",
"Win32_System_SystemServices",
"Win32_System_WindowsProgramming",
"Win32_System_IO",
"Win32_Storage_FileSystem",

]

Example Time!

A Sample Rust Project

https://github.com/duvallj/tungstenite_testings/blob/master/Cargo.toml

https://github.com/duvallj/tungstenite_testings/blob/master/Cargo.toml

Documentation

Documentation Comments

● Regular comments: `//` for single-line or `/* … */` for multi-line

● Doc comments: `///`, `/** … */`, `//!`, and `/*! … */`
○ Multiple consecutive single-line comments considered as an entire block

● `///` and `/** … */`: document the following item

● `//!` and `/*! … */`: document the "enclosing" item
○ Often used for preface documentation for an entire module, in addition to

documentation about each item

Rustdoc Is Your Friend

● All doc comments support Markdown

● Building documentation: `cargo doc` (that's it!)

● Generated documentation is very fancy

Documentation Tests

● Rust code in doc comments are considered tests
● Run the same way as other tests: `cargo test`
● Combining example code with tests is a super neat idea!

/// This function doubles a number

/// ```rust

/// assert_eq!(mycrate::double(42), 84);

/// ```

pub fn double(x: usize) { 2 * x }

Example Time 2!

https://docs.rs/rand/latest/rand/

● When you publish something to crates.io, the corresponding docs.rs

page is generated for you!

https://docs.rs/rand/latest/rand/

Homework

"Midterm" Assignment!

● Decide what project you want to do for the final

● Short description of project goals, external crates you plan on using

● Turn in on Gradescope by 03/02

Backup: Cargo Workspaces

target/ Is The New node_modules/

● Good practice: split out code into separate crates when possible

● Tightly-dependent crates will have similar dependencies

● Each cargo project will compile and download these to separate target/

directories!

Solution: Workspaces

// In a main Cargo.toml:

[workspace]

members = [

 "bin_crate", // these are names of directories with

 "lib_crate1", // Cargo.toml files, don't have to match

 "lib_crate2", // the name of individual crates

]

Notes About Workspaces

● Crates are still logically separate

● They share dependencies for compatibility and compilation speed

● `cargo test` tests all crates in a workspace

● `cargo publish` must still be done on each crate separately

● See

https://doc.rust-lang.org/stable/book/ch14-03-cargo-workspaces.html

for official docs

https://doc.rust-lang.org/stable/book/ch14-03-cargo-workspaces.html

Backup: Local Patches

Scenario: I Want To Contribute to FOSS!

But: reproducing a bug requires going through a dependency chain:

my_affected_crate v0.1.0

-> dependency v0.5.11

-> buggy_crate v0.12.0

Solution: Cargo.toml Patch Section

// In my_affected_crate's Cargo.toml:

[dependencies]

dependency = "0.5.11"

[patch.crates-io]

buggy_crate = { path = "../local_buggy_crate" }

Can I Override Other Sources?

Yes!

[patch.crates-io]

foo = { git = 'https://github.com/example/foo' }

bar = { path = 'my/local/bar' }

[dependencies.baz]

git = 'https://github.com/example/baz'

[patch.'https://github.com/example/baz']

baz = { git = 'https://github.com/example/patched-baz', branch = 'my-branch' }

Official Documentation Explains Further

https://doc.rust-lang.org/cargo/reference/overriding-dependencies.html

https://doc.rust-lang.org/cargo/reference/overriding-dependencies.html

Backup: Supertraits

What Are Supertraits?

● Supertrait: "Trait bound on implementing a trait"

trait BaseTrait {}

trait SuperTrait : BaseTrait {}

impl SuperTrait for () {

 // will fail to compile unless we also impl BaseTrait
for ()

}

Built-in Supertraits

● Copy: Clone
● Display: Debug
● Eq: PartialEq
● Ord: PartialOrd

Why Have Supertraits?

● Inheritance-like things are good sometimes, and we'd like to support

that pattern

An Extension of this: Extension Traits

● Main functionality is in one trait
● Extension trait: "automatically add new functionality for anything

implementing the previous trait"
● See: Future, FutureExt in the `future` crate

trait FutureExt : Future {

 // implementation uses methods from Future

}

impl<T: Future> FutureExt for T {}

https://docs.rs/futures/latest/futures/future/trait.FutureExt.html

