Rust’s Standard Library

Cooper Pierce

Carnegie Mellon University

Table of Contents

1 Common Data Structures

Cooper Pierce Rust’s Standard Library 24th February 2022 1/54

Arrays: [T; N]
Recall that we have statically fixed-size array types in Rust, written [T; NJ.

let x: [i32; 5] = [0, 1, 2, 3, 4];

let y = [0; 100];

let s [String: :from("foo"), String::from("bar")];

Cooper Pierce Rust’s Standard Library 24th February 2022 2 /54

Arrays: [T; N]
Recall that we have statically fixed-size array types in Rust, written [T; NJ.

let x: [i32; 5] = [0, 1, 2, 3, 4];

let y = [0; 100];

let s [String: :from("foo"), String::from("bar")];

and we can use “slice patterns” with them:

let [x, y, z] = [1, 2, 3];
let [a’ b] - ["A", "B"];

Cooper Pierce Rust’s Standard Library 24th February 2022

2/ 54

Vec<T>
... but this is pretty restrictive. What if | want a dynamically sized array?

Cooper Pierce Rust’s Standard Library 24th February 2022 3 /54

https://doc.rust-lang.org/std/vec/struct.Vec.html

Vec<T>

... but this is pretty restrictive. What if | want a dynamically sized array?

let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Cooper Pierce Rust’s Standard Library 24th February 2022 3 /54

https://doc.rust-lang.org/std/vec/struct.Vec.html

Vec<T>

... but this is pretty restrictive. What if | want a dynamically sized array?

let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);

x.push(6) ;

assert_eq! (x.len(), 7);

assert! (match x.pop() { Some(6) => true, _ => false });

Cooper Pierce Rust’s Standard Library 24th February 2022 3 /54

https://doc.rust-lang.org/std/vec/struct.Vec.html

Some useful functions for Vec<T>:

fn new() -> Vec<T>;
fn with_capacity(capacity: usize) -> Vec<T>;

fn push(&mut self, value: T);
fn pop(&mut self) -> Option<T>;
fn insert(&mut self, index: usize, element: T);

fn remove(&mut self, index: usize) -> T;

fn len(&self) -> usize;
fn is_empty(&self) -> bool;

Cooper Pierce Rust’s Standard Library 24th February 2022 4 /54

Vec<T>: Representation

|len |
| |
| 2 |
| == |
| capacity |
| |
| 4 |
| === |
|ptr l
| | | | | | |
| kmmm—mm o > 2 | 3 | X | X |

Cooper Pierce Rust’s Standard Library 24th February 2022 5 /54

https://doc.rust-lang.org/std/vec/struct.Vec.html

VecDeque<T>

What if we want efficent access to both the front and back of our Vec<T> for both
reading/writing?

let x = vec![1, 2, 3, 4];
x.remove (0) ;
x.insert (0, 5);

Cooper Pierce Rust’s Standard Library 24th February 2022 6 /54

https://doc.rust-lang.org/std/collections/vec_deque/struct.VecDeque.html

VecDeque<T>
What if we want efficent access to both the front and back of our Vec<T> for both

reading/writing?

let x = vec![1, 2, 3, 4];
x.remove (0) ;
x.insert (0, 5);

We can use a VecDeque<T> instead!

let x = VecDeque::from([1, 2, 3, 4]);
x.pop_front () ;
x.push_front(5);

Cooper Pierce Rust’s Standard Library 24th February 2022 6 /54

https://doc.rust-lang.org/std/collections/vec_deque/struct.VecDeque.html

Some useful functions for VecDeque<T>:

fn
fn

fn
fn

fn

fn
fn

new() -> Vec<T>;
with_capacity(capacity: usize) -> Vec<T>;

push_front / push_back(&mut self, value: T);
pop_front / pop_back(&mut self) -> Option<T>;

make_contiguous (&mut self) -> &mut [T];

len(&self) —> usize;
is_empty(&self) -> bool;

Cooper Pierce Rust’s Standard Library 24th February 2022 7 /54

Slices: [T], &[T] and &mut [T]

Recall that [T] is a unsized/dynamically-sized view into a continugous sequence of
element type T.

Because we can view many ways of collecting data this way, we can simply define a lot
of useful algorithms on this type:

fn len(&self) -> usize;

fn binary_search<T: Ord>(&self, x: &T) -> Result<usize, usize>;
fn sort<T: Ord>(&mut self);
fn sort_unstable<T: Ord>(&mut self);

fn windows(&self, size: usize) -> impl Iterator<Item = &[T]>;

Cooper Pierce Rust’s Standard Library 24th February 2022 8 /54

https://doc.rust-lang.org/std/primitive.slice.html

Slices: Representation

|len | |len | ptr [

| | I 21 x|

| 3 | | ___ [___1___I

| == | |

| capacity | |

| it '

| 4 | |

| === | |

Iptr L __ Vo
| | | | | | |
| kmmm—mmm——m o > 2 | 3 | 5 | X |

Cooper Pierce Rust’s Standard Library 24th February 2022 9 /54

HashMap and BTreeMap

We might also want to be able to efficently look up data given a key, and we have two
main way of doing this in the standard library:

HashMap
BTreeMap

which each have different trait bounds for the keys.

Cooper Pierce Rust’s Standard Library 24th February 2022 10 / 54

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

HashMap and BTreeMap

We might also want to be able to efficently look up data given a key, and we have two
main way of doing this in the standard library:

HashMap
BTreeMap

which each have different trait bounds for the keys.

For HashMap<K, V>, we (essentially) require that &K: Hash + Eq.
For BTreeMap<K, V>, we (essentially) require that &K: Ord and K: Ord.

Cooper Pierce Rust’s Standard Library 24th February 2022 10 / 54

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html

The most relevant functions are:

fn new() -> HashMap<K, V> / BTreeMap<K, V>;
fn insert (&mut self, key: K, value: V) -> Option<V>;

fn get<Q, K: Borrow<Q>>(&self, k: &Q) -> Option<&V>
fn remove<Q, K: Borrow<Q@>>(&mut self, key: &Q) -> Option<V>;

fn keys(&self) -> impl Iterator<Item = &K>;
fn values(&self) -> impl Iterator<Item = &K>;

fn entry(&mut self, key: K) -> Entry<'_, K, V>;

Cooper Pierce Rust’s Standard Library 24th February 2022 11 / 54

Entry

Let's take a look at that Entry<'a, K, V> type which popped up in our maps’
interface.

pub enum Entry<'a, K: 'a, V: 'a> {
Occupied(OccupiedEntry<'a, K, V>),
Vacant (VacantEntry<'a, K, V>),

}

and some relevant functions:

fn and_modify(self, f: impl FnOnce(&mut V)) -> Self;
fn or_insert(self, default: V) -> &'a mut V;

Cooper Pierce Rust’s Standard Library 24th February 2022 12 / 54

https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

Using an Entry

let mut map: HashMap<&str, u32> = HashMap: :new();

map.entry("my_entry")
.and_modify(le| { *e += 1 })
.or_insert(42);
assert! (match map.get("my_entry") { Some(42) => true, _ => false });

map.entry("my_entry")
.and_modify(le| { *e += 1 })
.or_insert (42);
assert! (match map.get("my_entry") { Some(43) => true, _ => false });

Cooper Pierce Rust’s Standard Library 24th February 2022 13 / 54

https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

Table of Contents

2 Common Traits

Cooper Pierce Rust’s Standard Library 24th February 2022 14 / 54

Clone

Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?

Cooper Pierce Rust’s Standard Library 24th February 2022 15 / 54

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone

Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),

Cooper Pierce Rust’s Standard Library 24th February 2022 15 / 54

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:
pub trait Clone {

fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,

Cooper Pierce Rust’s Standard Library 24th February 2022 15 / 54

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:
pub trait Clone {

fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,

Cooper Pierce Rust’s Standard Library 24th February 2022 15 / 54

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:
pub trait Clone {

fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,

function pointers,

Cooper Pierce Rust’s Standard Library 24th February 2022 15 / 54

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone
Any type which we can duplicate a value of implements (or should implement) Clone:
pub trait Clone {

fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T

Cooper Pierce Rust’s Standard Library 24th February 2022 15 / 54

https://doc.rust-lang.org/std/clone/trait.Clone.html

Clone

Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T
What about &mut T for all T?

Cooper Pierce Rust’s Standard Library 24th February 2022 15 / 54

https://doc.rust-lang.org/std/clone/trait.Clone.html

Copy

Let's look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this?

Cooper Pierce Rust’s Standard Library

24th February 2022

16 / 54

https://doc.rust-lang.org/std/marker/trait.Copy.html

Copy

Let's look at the definition of Copy:
pub trait Copy: Clone { }
Anything odd with this? We say that Copy is a “marker trait” because it doesn't

require anything specific to be implemented—it just “marks” the type as having some
property.

Cooper Pierce Rust’s Standard Library 24th February 2022 16 / 54

https://doc.rust-lang.org/std/marker/trait.Copy.html

Copy

Let's look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this? We say that Copy is a “marker trait” because it doesn't

require anything specific to be implemented—it just “marks” the type as having some

property.

let x = 7;

let y = x;

let z = x + y;

println! ("{} = {} + {}", z, x, y);

Cooper Pierce Rust’s Standard Library

24th February 2022

16 / 54

https://doc.rust-lang.org/std/marker/trait.Copy.html

Deriving Copy and Clone

Both Copy and Clone can be derived:

struct Rational (bool, u32, u32);

Cooper Pierce Rust’s Standard Library 24th February 2022 17 / 54

Deriving Copy and Clone

Both Copy and Clone can be derived:

struct Rational (bool, u32, u32);

struct Student {
andrewid: [u8; 8],
name: String,

Cooper Pierce Rust’s Standard Library

24th February 2022

17 / 54

PartialEq

In addition to making copies of values we have, another useful thing is to be able to
see if we have two values which are the same:

pub trait PartialEq<Rhs = Self> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

A type can implement PartialEq for any partial equvialence relation: it needs to be
symmetric and transitive, but not reflexive.
What might be a type which implements PartialEq, but not Eq?

Cooper Pierce Rust’s Standard Library 24th February 2022 18 / 54

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://en.wikipedia.org/wiki/Partial_equivalence_relation

PartialEq

In addition to making copies of values we have, another useful thing is to be able to
see if we have two values which are the same:

pub trait PartialEq<Rhs = Self> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

A type can implement PartialEq for any partial equvialence relation: it needs to be
symmetric and transitive, but not reflexive.
What might be a type which implements PartialEq, but not Eq?

One notable example is floating point types like £32 and f64, because NaN != NaN.

Cooper Pierce Rust’s Standard Library 24th February 2022 18 / 54

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://en.wikipedia.org/wiki/Partial_equivalence_relation

Eq

So like I've spoiled already, we have another trait for equivalence relations:

pub trait Eq: PartialEq<Self> { }

We can derive both this and PartialEq, which will just check all our fields pairwise, or
we can implement a custom version where we can check whatever properties matter to

us for equality

Cooper Pierce Rust’s Standard Library 24th February 2022 19 / 54

https://doc.rust-lang.org/std/cmp/trait.Eq.html

Implementing Eq

struct Class {
dept: u8,
number: u8,
cross_listed: HashSet<(u8, u8)>,

impl PartialEq for Class {
fn eq(&self, other: &Self) -> bool {
(self.dept == other.dept && self.number == other.number)
|| self.cross_listed.contains(&(other.dept, other.number))

impl Eq for Class { }

Cooper Pierce Rust’s Standard Library 24th February 2022 20 / 54

PartialOrd

We likewise have a trait for strict preorders on a subset of our type

pub trait PartialOrd<Rhs = Self>: PartialEq<Rhs> {
fn partial cmp(&self, other: &Rhs) -> Option<Ordering>;

fn 1t (&self, other: &Rhs) -> bool { ... }
fn le(&self, other: &Rhs) -> bool { ... }
fn gt(&self, other: &Rhs) -> bool { ... }
fn ge(&self, other: &Rhs) -> bool { ... }
}
enum Ordering {
Less,
Equal,
Greater,

}

Cooper Pierce Rust’s Standard Library 24th February 2022 21 /54

https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html

Ord

There's also a corresponding version for when we can define the order over all the
value for our type:

pub trait Ord: Eq + PartialOrd<Self> {

fn
fn
fn
fn

cmp (4self, other: &Self) -> Ordering;

max(self, other: Self) -> Self { ... }
min(self, other: Self) -> Self { ... }
clamp(self, min: Self, max: Self) -> Self { ... }

Here we can also see the value of being able to provide default implementations of
functions—the ones here are actually pretty useful!

Cooper Pierce

Rust’s Standard Library 24th February 2022 22 / 54

https://doc.rust-lang.org/std/cmp/trait.Ord.html

Debug

Oftentimes we might want a quick and easy way to print out a type for debugging—we
can do this with the "{:7}" format specifier, and it'll use the Debug implementation.

pub trait Debug {

fn fmt(&self, f: &mut Formatter<' >) -> Result<(), Error>;
}

Normally, we'll just derive this on everything and it'll help us out when we're
debugging.

assert_eq! (

struct Point { format! ("{:7}", Point { x: 7, y: 12 }),
x: 132, "Point { x: 7, y: 12 }"
y: 132 bE

+

Cooper Pierce Rust’s Standard Library 24th February 2022 23 / 54

https://doc.rust-lang.org/std/fmt/trait.Debug.html

Display
The definition of Display is the exact same as for Debug;:

pub trait Display {
fn fmt(&self, f: &mut Formatter<' >) -> Result<(), Error>;
}

except this is what's used for the "{}", the default/empty format specifier.
Because Display is intended for formatting user-facing output, we can't derive it, and
instead would implement it ourselves to dispay our data in a human-friendly way.

Cooper Pierce Rust’s Standard Library 24th February 2022 24 / 54

https://doc.rust-lang.org/std/fmt/trait.Display.html

From

Another common situation is wanting to be able to convert a value of one type to
another:

pub trait From<T> {
fn from(T) -> Self;
+

There's also a falliable version of this in TryFrom.
A common use for this, that we've already seen, is converting &'static str to
String—more on strings soon.

let s = String::from("Hello, world!");
let k: String = "Hello, world!".into();

Cooper Pierce Rust’s Standard Library 24th February 2022 25 / 54

https://doc.rust-lang.org/std/convert/trait.From.html

Into

Into essentially provides the reciprocol of From:

pub trait Into<T> {
fn into(self) —-> T;
}

Generally you want to implement From, because if T implements From<U>, then
Into<T> is automatically implemented for U. This is because there's a blanket
implementation for Into that looks like this:

impl<T, U: From<T>> Into<U> for T {
fn into(self) -> U {
U::from(self)

Cooper Pierce Rust’s Standard Library 24th February 2022

26 / 54

https://doc.rust-lang.org/std/convert/trait.Into.html

Table of Contents

3 lterator

Cooper Pierce Rust’s Standard Library 24th February 2022 27 / 54

Iterator

There's another major trait we haven't talked about in-depth yet, Iterator. To see
how useful this might be, let's take a look at it's items.

Cooper Pierce Rust’s Standard Library 24th February 2022 28 / 54

https://doc.rust-lang.org/std/iter/trait.Iterator.html

pub trait Iterator {

type Item;
fn next(&mut self) -> Option<Self::Item>;
fn size_hint(&self) -> (usize, Option<usize>) { ... }
fn count(self) -> usize { ... }
fn last(self) -> Option<Self::Item> { ... }
fn advance_by(&mut self, n: usize) -> Result<(), usize> { ... }
fn nth(&mut self, n: usize) -> Option<Self::Item> { ... }
fn step_by(self, step: usize) -> StepBy<Self> { ... }
fn chain<U>(self, other: U) -> Chain<Self, <U as Intolterator>::IntoIt
where
U: Intolterator<Item = Self::Item>,
{ }
fn zip<U>(self, other: U)

Cooper Pierce

Rust’s Standard Library 24th February 2022 29 / 54

-> Zip<Self, <U as Intolterator>::Intolter>
where
U: Intolterator,
{ ...}
fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
where
Self::Item: Clone,
{ ...}
fn intersperse_with<G>(self, separator: G)
-> IntersperseWith<Self, G>

where
G: FnMut() -> Self::Item,
{ ...}
fn map<B, F>(self, f: F) -> Map<Self, F>
where

F: FnMut(Self::Item) -> B,

Cooper Pierce Rust’s Standard Library 24th February 2022 30 / 54

{ ...}
fn for each<F>(self, f: F)

where
F: FnMut(Self::Item),
{ ...}
fn filter<P>(self, predicate: P) -> Filter<Self, P>
where
P: FnMut (&Self::Item) —> bool,
{ ...}
fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
where
F: FnMut(Self::Item) -> Option,
{ ...}
fn enumerate(self) —-> Enumerate<Self> { ... }
fn peekable(self) -> Peekable<Self> { ... }

fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>

Cooper Pierce Rust’s Standard Library 24th February 2022 31 /54

where
P: FnMut (&Self::Item) —-> bool,

{ ...}
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
where
P: FnMut (&Self::Item) —> bool,
{ ...}
fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
where
P: FnMut(Self::Item) -> Option,
{ ...}
fn skip(self, n: usize) -> Skip<Self> { ... }
fn take(self, n: usize) —-> Take<Self> { ... }

fn scan<St, B, F>(self, initial state: St, f: F)
-> Scan<Self, St, F>
where

Cooper Pierce Rust’s Standard Library 24th February 2022 32 /54

F: FnMut(&mut St, Self::Item) -> Option,
{ ...}
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where

U: Intolterator,

F: FnMut(Self::Item) -> U,

{ ...}
fn flatten(self) —> Flatten<Self>
where
Self::Item: Intolterator,
{ ...}
fn fuse(self) -> Fuse<Self> { ... }
fn inspect<F>(self, f: F) -> Inspect<Self, F>
where
F: FnMut (&Self::Item),
{ ...}

Cooper Pierce Rust’s Standard Library 24th February 2022 33 /54

fn by_ref (§mut self) -> &mut Self { ... }
fn collect(self) -> B

where
B: FromIterator<Self::Item>,
{ ...}
fn partition<B, F>(self, f: F) -> (B, B)
where

B: Default + Extend<Self::Item>,
F: FnMut (&Self::Item) -> bool,
{ ...}
fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
where
T: 'a,
Self: DoubleEndedIterator<Item = &'a mut T>,
P: FnMut(&T) -> bool,
{ ...}

Cooper Pierce Rust’s Standard Library 24th February 2022 34 /54

fn is_partitioned<P>(self, predicate: P) -> bool

where
P: FnMut(Self::Item) -> bool,
{ ...}
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where

F: FnMut (B, Self::Item) -> R,

R: Try<Output = B>,
{ ...}
fn try_for_each<F, R>(&mut self, f: F) -> R
where

F: FnMut(Self::Item) -> R,

R: Try<Output = ()>,
{ ...}
fn fold<B, F>(self, init: B, f: F) -> B
where

Cooper Pierce Rust’s Standard Library 24th February 2022 35 /54

F: FnMut (B, Self::Item) -> B,
{ ...}
fn reduce<F>(self, f: F) -> Option<Self::Item>
where

F: FnMut(Self::Item, Self::Item) -> Self::Item,
{ ...}
fn all<F>(&mut self, f: F) -> bool

where
F: FnMut(Self::Item) -> bool,
{ ...}
fn any<F>(&mut self, f: F) -> bool
where
F: FnMut(Self::Item) -> bool,
{ ...}
fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
where

Cooper Pierce Rust’s Standard Library 24th February 2022 36 / 54

P: FnMut (&Self::Item) —-> bool,

{...%
fn find_map<B, F>(&mut self, f: F) -> Option
where
F: FnMut(Self::Item) -> Option,
{...%

fn try_find<F, R, E>(&mut self, f: F)
—> Result<Option<Self::Item>, E>
where
F: FnMut (&Self::Item) -> R,
R: Try<Output = bool, Residual = Result<Infallible, E>>
+ Try,
{ ...}
fn position<P>(&mut self, predicate: P) -> Option<usize>
where
P: FnMut(Self::Item) -> bool,

Cooper Pierce Rust’s Standard Library 24th February 2022 37 /54

{ ...}
fn rposition<P>(&mut self, predicate: P) -> Option<usize>
where

P: FnMut(Self::Item) -> bool,

Self: ExactSizelterator + DoubleEndedIterator,

{ ...}
fn max(self) -> Option<Self::Item>
where

Self::Item: Ord,
{ ...}
fn min(self) -> Option<Self::Item>
where

Self::Item: Ord,
{ ...}
fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
where

Cooper Pierce Rust’s Standard Library 24th February 2022 38 /54

B: Ord,
F: FnMut (&Self::Item) —> B,
{ ...}
fn max_by<F>(self, compare: F) -> Option<Self::Item>
where
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{ ...}
fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>

where
B: Ord,
F: FnMut (&Self::Item) —> B,
{ ...}
fn min_by<F>(self, compare: F) -> Option<Self::Item>
where

F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{ ... %}

Cooper Pierce Rust’s Standard Library 24th February 2022 39 /54

fn rev(self) -> Rev<Self>

where
Self: DoubleEndedIterator,
{ ... %
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
where

FromA: Default + Extend<A>,
FromB: Default + Extend,
Self: Iterator<Item = (A, B)>,
{ ...}
fn copied<'a, T>(self) -> Copied<Self>
where
T: 'a + Copy,
Self: Iterator<Item = &'a T>,
{ ...}
fn cloned<'a, T>(self) -> Cloned<Self>

Cooper Pierce Rust’s Standard Library 24th February 2022 40 / 54

where
T: 'a + Clone,
Self: Iterator<Item = &'a T>,
{ ...}
fn cycle(self) -> Cycle<Self>
where
Self: Clone,
{ ...}
fn sum<S>(self) -> S
where
S: Sum<Self::Item>,
{ ...}
fn product<P>(self) -> P
where
P: Product<Self::Item>,
{ ...}

Cooper Pierce Rust’s Standard Library 24th February 2022 41 / 54

fn cmp<I>(self, other: I) -> Ordering
where

I: Intolterator<Item = Self::Item>,

Self::Item: Ord,
{ ...}
fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
where

I: Intolterator,

F: FnMut(Self::Item, <I as IntoIlterator>::Item)

—-> Ordering,

{ ...}
fn partial_cmp<I>(self, other: I) -> Option<Ordering>
where

I: Intolterator,

Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}

Cooper Pierce Rust’s Standard Library 24th February 2022 42 / 54

fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F)
-> Option<Ordering>
where
I: Intolterator,
F: FnMut(Self::Item, <I as IntolIterator>::Item)
-> Option<Ordering>,
{ ...}
fn eq<I>(self, other: I) -> bool
where
I: IntoIterator,
Self::Item: PartialEq<<I as Intolterator>::Item>,
{ ...}
fn eq_by<I, F>(self, other: I, eq: F) -> bool
where
I: Intolterator,
F: FnMut(Self::Item, <I as IntolIterator>::Item) -> bool,

Cooper Pierce Rust’s Standard Library 24th February 2022 43 / 54

{ ...}
fn ne<I>(self, other: I) -> bool
where
I: Intolterator,
Self::Item: PartialEq<<I as Intolterator>::Item>,
{ ...}
fn 1t<I>(self, other: I) -> bool
where
I: Intolterator,
Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}
fn le<I>(self, other: I) -> bool
where
I: Intolterator,
Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}

Cooper Pierce Rust’s Standard Library 24th February 2022 44 / 54

fn gt<I>(self, other: I) -> bool
where

I: Intolterator,

Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}
fn ge<I>(self, other: I) -> bool
where

I: Intolterator,

Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}

fn is_sorted(self) -> bool

where
Self::Item: PartialOrd<Self::Item>,
{ ...}
fn is_sorted_by<F>(self, compare: F) -> bool
where

Cooper Pierce Rust’s Standard Library 24th February 2022 45 / 54

F: FnMut (&Self::Item, &Self::Item) -> Option<Ordering>,
{ ...}
fn is_sorted_by_key<F, K>(self, f: F) -> bool
where
F: FnMut(Self::Item) -> K,
K: PartialOrd<K>,
{ ...}

. a lot of stuff!

Cooper Pierce Rust’s Standard Library 24th February 2022 46 / 54

Ones you probably care about

trait Iterator {

type Item;

fn next(&mut self) -> Option<Self::Item>;

fn map(self, f: impl FnMut(Self::Item) -> B)
-> impl Iterator<Item = B>

{ ... %

fn filter(self, predicate: impl FnMut (&Self::Item) -> bool)
-> impl Iterator<Item = Self::Item>

{ ...}
fn flatten(self) -> Flatten<Self>
where
Self::Item: Intolterator,
{ ...}

Cooper Pierce Rust’s Standard Library 24th February 2022 47 / 54

IntoIterator

pub trait IntoIterator {

type Item;

type Intolter: Iterator;

fn into_iter(self) -> Self::Intolter;
}

What is a for loop anyway?
https://doc.rust-lang.org/std/iter/index.html#for-loops-and-intoiterator

Cooper Pierce Rust’s Standard Library 24th February 2022 48 / 54

https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/index.html#for-loops-and-intoiterator

Table of Contents

4 Smart Pointers and Cells

Cooper Pierce Rust’s Standard Library 24th February 2022 49 / 54

Box<T>

A Box<T> is just a (non-null!) pointer which owns a value of type T.

let x = Box::new(7);
assert_eq! (*x, 7);
*x += 10;
assert_eq! (*x, 17);

This ends up being very useful when defining a recursive struct or enum.

Cooper Pierce Rust’s Standard Library 24th February 2022 50 / 54

https://doc.rust-lang.org/std/boxed/struct.Box.html

Some relevant functions for working with Box<T>:

fn new(x: T) -> Box<T>;
fn leak<'a>(b: Box<T>) -> &'a mut T;

fn as_mut(&self) -> &mut T;
fn as_ref (&self) -> &T;

Cooper Pierce Rust’s Standard Library 24th February 2022 51 / 54

Box<T>: Representation

Cooper Pierce Rust’s Standard Library 24th February 2022 52 / 54

Box<T>: Representation

If we're using an Option<Box<T>> we can perform a null pointer optimisation, where
None is represented as

So we can avoid storing an extra byte to know if we're None or Some (v).
Cooper Pierce Rust’s Standard Library 24th February 2022 52 / 54

Rc<T>

Where we can only have one owner of a Box<T>, and all ownership is enforced
statically, we can instead used reference counting to push some of this to runtime (for
a little cost).

let mut x = Rc::new(3);

if let Some(v) = Rc::get_mut(&mut x) {
*xv = 4;

} else {

panic!("Didn't get a mutable reference!");

}

assert_eq! (*x, 4);

let _y = Rc::clone(&x);
assert! (Rc::get_mut (&mut x).is_none());

Cooper Pierce Rust’s Standard Library 24th February 2022 53 / 54

https://doc.rust-lang.org/std/boxed/struct.Box.html

Relevant functions for Rc<T>.

fn new(value: T) -> Rc<T>;
fn get_mut(this: &mut Rc<T>) -> Option<&mut T>;
fn make mut<T: Clone>(this: &mut Rc<T>) -> &mut T;

fn clone(&self) -> Rc<T>;

Cooper Pierce Rust’s Standard Library 24th February 2022 54 / 54

	Common Data Structures
	Common Traits
	Iterator
	Smart Pointers and Cells

