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Arrays: [T; N]
Recall that we have statically fixed-size array types in Rust, written [T; NJ.

let x: [i32; 5] = [0, 1, 2, 3, 4];

let y = [0; 100];

let s [String: :from("foo"), String::from("bar")];
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Arrays: [T; N]
Recall that we have statically fixed-size array types in Rust, written [T; NJ.

let x: [i32; 5] = [0, 1, 2, 3, 4];

let y = [0; 100];

let s [String: :from("foo"), String::from("bar")];

and we can use “slice patterns” with them:

let [x, y, z] = [1, 2, 3];
let [a’ b] - ["A", "B"];
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Vec<T>
... but this is pretty restrictive. What if | want a dynamically sized array?
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Vec<T>

... but this is pretty restrictive. What if | want a dynamically sized array?

let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];
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Vec<T>

... but this is pretty restrictive. What if | want a dynamically sized array?

let x = vec![0, 1, 2, 3, 4];
let y = vec![0; 100];

Because the sizing is dynamic, we can add to these:

x.push(5);

x.push(6) ;

assert_eq! (x.len(), 7);

assert! (match x.pop() { Some(6) => true, _ => false });
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Some useful functions for Vec<T>:

fn new() -> Vec<T>;
fn with_capacity(capacity: usize) -> Vec<T>;

fn push(&mut self, value: T);
fn pop(&mut self) -> Option<T>;
fn insert(&mut self, index: usize, element: T);

fn remove(&mut self, index: usize) -> T;

fn len(&self) -> usize;
fn is_empty(&self) -> bool;
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Vec<T>: Representation

|len |
| |
| 2 |
| == |
| capacity |
| |
| 4 |
| === |
|ptr l
| | | | | | |
| kmmm—mm o > 2 | 3 | X | X |
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VecDeque<T>

What if we want efficent access to both the front and back of our Vec<T> for both
reading/writing?

let x = vec![1, 2, 3, 4];
x.remove (0) ;
x.insert (0, 5);

Cooper Pierce Rust’s Standard Library 24th February 2022 6 /54


https://doc.rust-lang.org/std/collections/vec_deque/struct.VecDeque.html

VecDeque<T>
What if we want efficent access to both the front and back of our Vec<T> for both

reading/writing?

let x = vec![1, 2, 3, 4];
x.remove (0) ;
x.insert (0, 5);

We can use a VecDeque<T> instead!

let x = VecDeque::from([1, 2, 3, 4]);
x.pop_front () ;
x.push_front(5);
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Some useful functions for VecDeque<T>:

fn
fn

fn
fn

fn

fn
fn

new() -> Vec<T>;
with_capacity(capacity: usize) -> Vec<T>;

push_front / push_back(&mut self, value: T);
pop_front / pop_back(&mut self) -> Option<T>;

make_contiguous (&mut self) -> &mut [T];

len(&self) —> usize;
is_empty(&self) -> bool;
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Slices: [T], &[T] and &mut [T]

Recall that [T] is a unsized/dynamically-sized view into a continugous sequence of
element type T.

Because we can view many ways of collecting data this way, we can simply define a lot
of useful algorithms on this type:

fn len(&self) -> usize;

fn binary_search<T: Ord>(&self, x: &T) -> Result<usize, usize>;
fn sort<T: Ord>(&mut self);
fn sort_unstable<T: Ord>(&mut self);

fn windows(&self, size: usize) -> impl Iterator<Item = &[T]>;
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Slices: Representation

|len | |len | ptr [

| | I 21 x|

| 3 | | ___ [___1___I

| == | |

| capacity | |

| it '

| 4 | |

| === | |

Iptr L __ Vo
| | | | | | |
| kmmm—mmm——m o > 2 | 3 | 5 | X |
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HashMap and BTreeMap

We might also want to be able to efficently look up data given a key, and we have two
main way of doing this in the standard library:

HashMap
BTreeMap

which each have different trait bounds for the keys.
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HashMap and BTreeMap

We might also want to be able to efficently look up data given a key, and we have two
main way of doing this in the standard library:

HashMap
BTreeMap

which each have different trait bounds for the keys.

For HashMap<K, V>, we (essentially) require that &K: Hash + Eq.
For BTreeMap<K, V>, we (essentially) require that &K: Ord and K: Ord.
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The most relevant functions are:

fn new() -> HashMap<K, V> / BTreeMap<K, V>;
fn insert (&mut self, key: K, value: V) -> Option<V>;

fn get<Q, K: Borrow<Q>>(&self, k: &Q) -> Option<&V>
fn remove<Q, K: Borrow<Q@>>(&mut self, key: &Q) -> Option<V>;

fn keys(&self) -> impl Iterator<Item = &K>;
fn values(&self) -> impl Iterator<Item = &K>;

fn entry(&mut self, key: K) -> Entry<'_, K, V>;
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Entry

Let's take a look at that Entry<'a, K, V> type which popped up in our maps’
interface.

pub enum Entry<'a, K: 'a, V: 'a> {
Occupied(OccupiedEntry<'a, K, V>),
Vacant (VacantEntry<'a, K, V>),

}

and some relevant functions:

fn and_modify(self, f: impl FnOnce(&mut V)) -> Self;
fn or_insert(self, default: V) -> &'a mut V;
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Using an Entry

let mut map: HashMap<&str, u32> = HashMap: :new();

map.entry("my_entry")
.and_modify(le| { *e += 1 })
.or_insert(42);
assert! (match map.get("my_entry") { Some(42) => true, _ => false });

map.entry("my_entry")
.and_modify(le| { *e += 1 })
.or_insert (42);
assert! (match map.get("my_entry") { Some(43) => true, _ => false });
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Clone

Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
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Clone

Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
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Clone
Any type which we can duplicate a value of implements (or should implement) Clone:
pub trait Clone {

fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
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Clone
Any type which we can duplicate a value of implements (or should implement) Clone:
pub trait Clone {

fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
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Clone
Any type which we can duplicate a value of implements (or should implement) Clone:
pub trait Clone {

fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,

function pointers,
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Clone
Any type which we can duplicate a value of implements (or should implement) Clone:
pub trait Clone {

fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T
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Clone

Any type which we can duplicate a value of implements (or should implement) Clone:

pub trait Clone {
fn clone(&self) -> Self;
fn clone_from(&mut self, source: &Self) { ... }

What are some types which implement this?
integer types (e.g., 132, usize),
bool,
Vec<T>, VecDeque<T>, String, other collections,
function pointers,
&T for all T
What about &mut T for all T?
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Copy

Let's look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this?
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Copy

Let's look at the definition of Copy:
pub trait Copy: Clone { }
Anything odd with this? We say that Copy is a “marker trait” because it doesn't

require anything specific to be implemented—it just “marks” the type as having some
property.
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Copy

Let's look at the definition of Copy:

pub trait Copy: Clone { }

Anything odd with this? We say that Copy is a “marker trait” because it doesn't

require anything specific to be implemented—it just “marks” the type as having some

property.

let x = 7;

let y = x;

let z = x + y;

println! ("{} = {} + {}", z, x, y);
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Deriving Copy and Clone

Both Copy and Clone can be derived:

struct Rational (bool, u32, u32);
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Deriving Copy and Clone

Both Copy and Clone can be derived:

struct Rational (bool, u32, u32);

struct Student {
andrewid: [u8; 8],
name: String,
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PartialEq

In addition to making copies of values we have, another useful thing is to be able to
see if we have two values which are the same:

pub trait PartialEq<Rhs = Self> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

A type can implement PartialEq for any partial equvialence relation: it needs to be
symmetric and transitive, but not reflexive.
What might be a type which implements PartialEq, but not Eq?
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PartialEq

In addition to making copies of values we have, another useful thing is to be able to
see if we have two values which are the same:

pub trait PartialEq<Rhs = Self> {
fn eq(&self, other: &Rhs) -> bool;
fn ne(&self, other: &Rhs) -> bool { ... }

A type can implement PartialEq for any partial equvialence relation: it needs to be
symmetric and transitive, but not reflexive.
What might be a type which implements PartialEq, but not Eq?

One notable example is floating point types like £32 and f64, because NaN != NaN.
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Eq

So like I've spoiled already, we have another trait for equivalence relations:

pub trait Eq: PartialEq<Self> { }

We can derive both this and PartialEq, which will just check all our fields pairwise, or
we can implement a custom version where we can check whatever properties matter to

us for equality
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Implementing Eq

struct Class {
dept: u8,
number: u8,
cross_listed: HashSet<(u8, u8)>,

impl PartialEq for Class {
fn eq(&self, other: &Self) -> bool {
(self.dept == other.dept && self.number == other.number)
|| self.cross_listed.contains(&(other.dept, other.number))

impl Eq for Class { }
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PartialOrd

We likewise have a trait for strict preorders on a subset of our type

pub trait PartialOrd<Rhs = Self>: PartialEq<Rhs> {
fn partial cmp(&self, other: &Rhs) -> Option<Ordering>;

fn 1t (&self, other: &Rhs) -> bool { ... }
fn le(&self, other: &Rhs) -> bool { ... }
fn gt(&self, other: &Rhs) -> bool { ... }
fn ge(&self, other: &Rhs) -> bool { ... }
}
enum Ordering {
Less,
Equal,
Greater,

}
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Ord

There's also a corresponding version for when we can define the order over all the
value for our type:

pub trait Ord: Eq + PartialOrd<Self> {

fn
fn
fn
fn

cmp (4self, other: &Self) -> Ordering;

max(self, other: Self) -> Self { ... }
min(self, other: Self) -> Self { ... }
clamp(self, min: Self, max: Self) -> Self { ... }

Here we can also see the value of being able to provide default implementations of
functions—the ones here are actually pretty useful!
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Debug

Oftentimes we might want a quick and easy way to print out a type for debugging—we
can do this with the "{:7}" format specifier, and it'll use the Debug implementation.

pub trait Debug {

fn fmt(&self, f: &mut Formatter<' >) -> Result<(), Error>;
}

Normally, we'll just derive this on everything and it'll help us out when we're
debugging.

assert_eq! (

struct Point { format! ("{:7}", Point { x: 7, y: 12 }),
x: 132, "Point { x: 7, y: 12 }"
y: 132 bE

+
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Display
The definition of Display is the exact same as for Debug;:

pub trait Display {
fn fmt(&self, f: &mut Formatter<' >) -> Result<(), Error>;
}

except this is what's used for the "{}", the default/empty format specifier.
Because Display is intended for formatting user-facing output, we can't derive it, and
instead would implement it ourselves to dispay our data in a human-friendly way.
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From

Another common situation is wanting to be able to convert a value of one type to
another:

pub trait From<T> {
fn from(T) -> Self;
+

There's also a falliable version of this in TryFrom.
A common use for this, that we've already seen, is converting &'static str to
String—more on strings soon.

let s = String::from("Hello, world!");
let k: String = "Hello, world!".into();
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Into

Into essentially provides the reciprocol of From:

pub trait Into<T> {
fn into(self) —-> T;
}

Generally you want to implement From, because if T implements From<U>, then
Into<T> is automatically implemented for U. This is because there's a blanket
implementation for Into that looks like this:

impl<T, U: From<T>> Into<U> for T {
fn into(self) -> U {
U::from(self)
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Iterator

There's another major trait we haven't talked about in-depth yet, Iterator. To see
how useful this might be, let's take a look at it's items.
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pub trait Iterator {

type Item;
fn next(&mut self) -> Option<Self::Item>;
fn size_hint(&self) -> (usize, Option<usize>) { ... }
fn count(self) -> usize { ... }
fn last(self) -> Option<Self::Item> { ... }
fn advance_by(&mut self, n: usize) -> Result<(), usize> { ... }
fn nth(&mut self, n: usize) -> Option<Self::Item> { ... }
fn step_by(self, step: usize) -> StepBy<Self> { ... }
fn chain<U>(self, other: U) -> Chain<Self, <U as Intolterator>::IntoIt
where
U: Intolterator<Item = Self::Item>,
{ }
fn zip<U>(self, other: U)
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-> Zip<Self, <U as Intolterator>::Intolter>
where
U: Intolterator,
{ ...}
fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
where
Self::Item: Clone,
{ ...}
fn intersperse_with<G>(self, separator: G)
-> IntersperseWith<Self, G>

where
G: FnMut() -> Self::Item,
{ ...}
fn map<B, F>(self, f: F) -> Map<Self, F>
where

F: FnMut(Self::Item) -> B,
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{ ...}
fn for each<F>(self, f: F)

where
F: FnMut(Self::Item),
{ ...}
fn filter<P>(self, predicate: P) -> Filter<Self, P>
where
P: FnMut (&Self::Item) —> bool,
{ ...}
fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
where
F: FnMut(Self::Item) -> Option<B>,
{ ...}
fn enumerate(self) —-> Enumerate<Self> { ... }
fn peekable(self) -> Peekable<Self> { ... }

fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
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where
P: FnMut (&Self::Item) —-> bool,

{ ...}
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
where
P: FnMut (&Self::Item) —> bool,
{ ...}
fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
where
P: FnMut(Self::Item) -> Option<B>,
{ ...}
fn skip(self, n: usize) -> Skip<Self> { ... }
fn take(self, n: usize) —-> Take<Self> { ... }

fn scan<St, B, F>(self, initial state: St, f: F)
-> Scan<Self, St, F>
where
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F: FnMut(&mut St, Self::Item) -> Option<B>,
{ ...}
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where

U: Intolterator,

F: FnMut(Self::Item) -> U,

{ ...}
fn flatten(self) —> Flatten<Self>
where
Self::Item: Intolterator,
{ ...}
fn fuse(self) -> Fuse<Self> { ... }
fn inspect<F>(self, f: F) -> Inspect<Self, F>
where
F: FnMut (&Self::Item),
{ ...}
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fn by_ref (§mut self) -> &mut Self { ... }
fn collect<B>(self) -> B

where
B: FromIterator<Self::Item>,
{ ...}
fn partition<B, F>(self, f: F) -> (B, B)
where

B: Default + Extend<Self::Item>,
F: FnMut (&Self::Item) -> bool,
{ ...}
fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
where
T: 'a,
Self: DoubleEndedIterator<Item = &'a mut T>,
P: FnMut(&T) -> bool,
{ ...}
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fn is_partitioned<P>(self, predicate: P) -> bool

where
P: FnMut(Self::Item) -> bool,
{ ...}
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where

F: FnMut (B, Self::Item) -> R,

R: Try<Output = B>,
{ ...}
fn try_for_each<F, R>(&mut self, f: F) -> R
where

F: FnMut(Self::Item) -> R,

R: Try<Output = ()>,
{ ...}
fn fold<B, F>(self, init: B, f: F) -> B
where
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F: FnMut (B, Self::Item) -> B,
{ ...}
fn reduce<F>(self, f: F) -> Option<Self::Item>
where

F: FnMut(Self::Item, Self::Item) -> Self::Item,
{ ...}
fn all<F>(&mut self, f: F) -> bool

where
F: FnMut(Self::Item) -> bool,
{ ...}
fn any<F>(&mut self, f: F) -> bool
where
F: FnMut(Self::Item) -> bool,
{ ...}
fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
where
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P: FnMut (&Self::Item) —-> bool,

{...%
fn find_map<B, F>(&mut self, f: F) -> Option<B>
where
F: FnMut(Self::Item) -> Option<B>,
{...%

fn try_find<F, R, E>(&mut self, f: F)
—> Result<Option<Self::Item>, E>
where
F: FnMut (&Self::Item) -> R,
R: Try<Output = bool, Residual = Result<Infallible, E>>
+ Try,
{ ...}
fn position<P>(&mut self, predicate: P) -> Option<usize>
where
P: FnMut(Self::Item) -> bool,
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{ ...}
fn rposition<P>(&mut self, predicate: P) -> Option<usize>
where

P: FnMut(Self::Item) -> bool,

Self: ExactSizelterator + DoubleEndedIterator,

{ ...}
fn max(self) -> Option<Self::Item>
where

Self::Item: Ord,
{ ...}
fn min(self) -> Option<Self::Item>
where

Self::Item: Ord,
{ ...}
fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
where
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B: Ord,
F: FnMut (&Self::Item) —> B,
{ ...}
fn max_by<F>(self, compare: F) -> Option<Self::Item>
where
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{ ...}
fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>

where
B: Ord,
F: FnMut (&Self::Item) —> B,
{ ...}
fn min_by<F>(self, compare: F) -> Option<Self::Item>
where

F: FnMut(&Self::Item, &Self::Item) -> Ordering,
{ ... %}
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fn rev(self) -> Rev<Self>

where
Self: DoubleEndedIterator,
{ ... %
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
where

FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
Self: Iterator<Item = (A, B)>,
{ ...}
fn copied<'a, T>(self) -> Copied<Self>
where
T: 'a + Copy,
Self: Iterator<Item = &'a T>,
{ ...}
fn cloned<'a, T>(self) -> Cloned<Self>

Cooper Pierce Rust’s Standard Library 24th February 2022 40 / 54



where
T: 'a + Clone,
Self: Iterator<Item = &'a T>,
{ ...}
fn cycle(self) -> Cycle<Self>
where
Self: Clone,
{ ...}
fn sum<S>(self) -> S
where
S: Sum<Self::Item>,
{ ...}
fn product<P>(self) -> P
where
P: Product<Self::Item>,
{ ...}
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fn cmp<I>(self, other: I) -> Ordering
where

I: Intolterator<Item = Self::Item>,

Self::Item: Ord,
{ ...}
fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
where

I: Intolterator,

F: FnMut(Self::Item, <I as IntoIlterator>::Item)

—-> Ordering,

{ ...}
fn partial_cmp<I>(self, other: I) -> Option<Ordering>
where

I: Intolterator,

Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}

Cooper Pierce Rust’s Standard Library 24th February 2022 42 / 54



fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F)
-> Option<Ordering>
where
I: Intolterator,
F: FnMut(Self::Item, <I as IntolIterator>::Item)
-> Option<Ordering>,
{ ...}
fn eq<I>(self, other: I) -> bool
where
I: IntoIterator,
Self::Item: PartialEq<<I as Intolterator>::Item>,
{ ...}
fn eq_by<I, F>(self, other: I, eq: F) -> bool
where
I: Intolterator,
F: FnMut(Self::Item, <I as IntolIterator>::Item) -> bool,
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{ ...}
fn ne<I>(self, other: I) -> bool
where
I: Intolterator,
Self::Item: PartialEq<<I as Intolterator>::Item>,
{ ...}
fn 1t<I>(self, other: I) -> bool
where
I: Intolterator,
Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}
fn le<I>(self, other: I) -> bool
where
I: Intolterator,
Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}
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fn gt<I>(self, other: I) -> bool
where

I: Intolterator,

Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}
fn ge<I>(self, other: I) -> bool
where

I: Intolterator,

Self::Item: PartialOrd<<I as Intolterator>::Item>,
{ ...}

fn is_sorted(self) -> bool

where
Self::Item: PartialOrd<Self::Item>,
{ ...}
fn is_sorted_by<F>(self, compare: F) -> bool
where
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F: FnMut (&Self::Item, &Self::Item) -> Option<Ordering>,
{ ...}
fn is_sorted_by_key<F, K>(self, f: F) -> bool
where
F: FnMut(Self::Item) -> K,
K: PartialOrd<K>,
{ ...}

. a lot of stuff!
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Ones you probably care about

trait Iterator {

type Item;

fn next(&mut self) -> Option<Self::Item>;

fn map<B>(self, f: impl FnMut(Self::Item) -> B)
-> impl Iterator<Item = B>

{ ... %

fn filter(self, predicate: impl FnMut (&Self::Item) -> bool)
-> impl Iterator<Item = Self::Item>

{ ...}
fn flatten(self) -> Flatten<Self>
where
Self::Item: Intolterator,
{ ...}
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IntoIterator

pub trait IntoIterator {

type Item;

type Intolter: Iterator;

fn into_iter(self) -> Self::Intolter;
}

What is a for loop anyway?
https://doc.rust-lang.org/std/iter/index.html#for-loops-and-intoiterator
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https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/index.html#for-loops-and-intoiterator

Table of Contents

4 Smart Pointers and Cells
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Box<T>

A Box<T> is just a (non-null!) pointer which owns a value of type T.

let x = Box::new(7);
assert_eq! (*x, 7);
*x += 10;
assert_eq! (*x, 17);

This ends up being very useful when defining a recursive struct or enum.
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https://doc.rust-lang.org/std/boxed/struct.Box.html

Some relevant functions for working with Box<T>:

fn new(x: T) -> Box<T>;
fn leak<'a>(b: Box<T>) -> &'a mut T;

fn as_mut(&self) -> &mut T;
fn as_ref (&self) -> &T;
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Box<T>: Representation

Cooper Pierce Rust’s Standard Library 24th February 2022 52 / 54



Box<T>: Representation

If we're using an Option<Box<T>> we can perform a null pointer optimisation, where
None is represented as

So we can avoid storing an extra byte to know if we're None or Some (v).
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Rc<T>

Where we can only have one owner of a Box<T>, and all ownership is enforced
statically, we can instead used reference counting to push some of this to runtime (for
a little cost).

let mut x = Rc::new(3);

if let Some(v) = Rc::get_mut(&mut x) {
*xv = 4;

} else {

panic!("Didn't get a mutable reference!");

}

assert_eq! (*x, 4);

let _y = Rc::clone(&x);
assert! (Rc::get_mut (&mut x).is_none());
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https://doc.rust-lang.org/std/boxed/struct.Box.html

Relevant functions for Rc<T>.

fn new(value: T) -> Rc<T>;
fn get_mut(this: &mut Rc<T>) -> Option<&mut T>;
fn make mut<T: Clone>(this: &mut Rc<T>) -> &mut T;

fn clone(&self) -> Rc<T>;

Cooper Pierce Rust’s Standard Library 24th February 2022 54 / 54



	Common Data Structures
	Common Traits
	Iterator
	Smart Pointers and Cells

