Lec 7: Strings

Jack Duvall

The Classic How We See Strings
After using Rust Before using Rust

&str
String
&[u8]
&[u8; N]
Vec<ud>
&ud
OsStr
OsString
Path
PathBuf
CStr
CString
&' static str

R

00000000000 0QOO0C0CO0O®
——
(]
g

Strings Are Important

e Many things can only be represented as strings
o Names
o Descriptions
o Addresses

e Human-readable
e "Just" alist of characters!

How To Represent Strings?

1. How toencode length?

o C,C++:implicitly with a NUL terminator

e Every Other Language Since: explicitly, with a length field
2. What's the size of each character?

e (C,C++:atleast1byte

e Rust: exactly 1 byte

e Java, C#:exactly 2 bytes
3. How are characters encoded?

e C C++:lmaowhat's that
e Go, Python, Rust: UTF-8
e Java,C#:UTF-16

Length Encoding

Implicit Length Was A Mistake

e |nvariant: string always ends with a special character call the "null

terminator"
e Violated if:

o Buffer too small to contain string + terminator
o null terminator overwritten with extra data

e O(n)to find length of string

e |[finvariant violated, trying to find length will cause a crash!
o Very easy to violate these in user code with off-by-one errors

e Why we considered this at all: only 1 byte of overhead per string, data
register can be re-used for loop guard

Explicit Length

e |nvariant: length field is how many character units are valid
o Usually, this field is private from user code

e Violated if:

o Library operations don't update the length correctly

O(1) to find length of string

Drawback:

o 4 or 8bytes of overhead per string
o For C compatibility, need to have null terminator anyways.

Character Encodings

Relevant XKCD

HOW STANDARDS PROLFERATE:

(SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDARDS.

M7 RiplcuLovs)

WE NEED To DEVELOP

ONE UNINERSAL STANDARD

THAT COVERS EVERYONE'S
USE CASES. YERH!

OCON:

SITUANON:

THERE ARE
|5 COMPETING
STANDARDS.

https://xkcd.com/927/

https://xkcd.com/927/

Relevant Wikipedia Article

Source Target
= A Result Occurrence
encoding encoding
. ARVIZTURO TUKORFUROGEP .)
Hungarian example S Characters in red are incorrect and do not match the top-left example.
arviztird tukorfurogép
This was very common in DOS-era when the text was encoded by the Central European CP 852 encoding;

cpas2 CP 437 4 RV ;ZT6Re TUKORFORAGEP however, the operating system, a software or printer used the default CP 437 encoding. Please note that

arvizt\ri tukérfurogép small-case letters are mainly correct, exception with 6 (i) and i (V). U/ii is correct because CP 852 was

made compatible with German. Nowadays occurs mainly on printed prescriptions and cheques.

The CWI-2 encoding was designed so that the text remains fairly well-readable even if the display or printer

ARVIZTyR°® TUKORFUROGEP 4 - : = :
CWwi-2 CP 437 ST SN uses the default CP 437 encoding. This encoding was heavily used in the 1980s and early 1990s, but
arviztaro tukorfurogép o
nowadays it is completely deprecated.
o R The default Western Windows encoding is used instead of the Central-European one. Only 6-O (6-O) and
) ARVIZTURO TUKORFUROGEP iy e i o

Windows-1250 Windows-1252 = = =~ 0-U (0-U) are wrong, but the text is completely readable. This is the most common error nowadays; due to

arviztaré tukorfurogép

ignorance, it occurs often on webpages or even in printed media.

PRVOZTERS TSK™RFERIG P
v ztlre t K'rferg,p

LRV=ZTlIRN TgKIRF (REG P

CP 852 Windows-1250 Central European Windows encoding is used instead of DOS encoding. The use of { is correct.

Windows-1250 CP 852 Central European DOS encoding is used instead of Windows encoding. The use of { is correct.

RrvYztir§ tRk+rf'rgUp

=C1RV=CDZT=DBR=D5
Quoted- 7-bit ASCHI T=DCK=D6RF=DAR=D3G=C9P Mainly caused by wrongly configured mail servers but may occur in SMS messages on some cell-phones
printable =E1rv=EDzt=FBr=F5 as well.

t=FCk=F6rf=FAr=F3g=E9p

S - = Mainly caused by wrongly configured web services or webmail clients, which were not tested for

ARVAZTA°RA TAceKA— : : 2 : .

SRR international usage (as the problem remains concealed for English texts). In this case the actual (often
UTF-8 Windows-1252 = RFASRA"GA%P

generated) content is in UTF-8; however, it is not configured in the HTML headers, so the rendering engine

AjrvAZtALrA' tAVKASFACTAgAC)
5 wAT gaee displays it with the default Western encoding.

https://en.wikipedia.org/wiki/Mojibake

https://en.wikipedia.org/wiki/Mojibake

But! A Standard Has Won!

e UTF-8

o Used by over 97% of all websites

o Default system encoding on Linux and MacOs
e Reasons:

o Full compatibility with ASCII, which was historically very popular
o 8-bitunits => generally faster than wider encodings
o Still flexible enough to represent more characters than we could realistically need

How UTF-8 Works

e FEach possible character assigned a Unicode "code point"

o "a"=U+0061

)" - U+1FOAB

e Binary value of

First code point | Last code point

codepoint assigned

. f ” . U+0000 U+007F
to "X s infollowing Ce 008D U+O7FF
chart: U+0800 U+FFFF

U+10000 | [M®2IU+10FFFF

Byte 1
OxXxXXXXXX
110xxxxx
1110xxxx

I3 T0xxx

Code point <-> UTF-8 conversion

Byte 2

10XXXXXX
10xXXXXXX

10xXXXXXX

Byte 3 Byte 4

10XXXXXX

10xxxXxXxXX | 10XXXXXX

https://en.wikipedia.org/wiki/UTF-8

https://en.wikipedia.org/wiki/UTF-8

History And Competing Standards

e ASCII: American Standard Code for Information Interchange

Developed from 1963-1968 for computerized telegraphs

7-bit units

Sorting numerically => sorting alphabetically!

Room for control characters

"On March 11, 1968, U.S. President Lyndon B. Johnson mandated that all computers
purchased by the United States Federal Government support ASCI|"

o UTF-16
o Unicode like UTF-8, but individual units are 2 bytes instead of 1

o Notdirectly compatible with UTF-8
o Pro: U+0000 to U+FFFF directly representable in 1 unit

o O O O O

C Supports All Standards

... 50 long as they have a certain set of basic characters (English alphabet
+ numbers + some punctuation)
and those basic characters take up exactly 1 byte
and there's a NUL character with all zero bits to represent the end of
strings
Nothing else is enforced!

o Noordering (besides digits), no non-negativity, definitely no encoding standard
Reasonable to have these constraints, unreasonable that these are the
only ones

C Literally Does Not Give A Darn

e String literals are compiled in, may not reflect encoding of system it
runs on

e Converting between encodings is entirely optional

e Specifying the encoding you want is implementation-dependent

e C++inherits all these flaws
o std:string doesn't have any specified encoding!

Rust Does Give A Darn

e Allstrings are valid UTF-8
e Built-in functionality to convert to/from UTF-16 for interfacing with
other languages

Rust’s String Types

Borrowed String: &str

e Alsocalled a"string slice"
e UTF-8encoded

e Canreferto:

o String literals in the program
o Substrings of other strings

let x: &str = "Hello World";

let y: §str = §x[0..5];

Owned String: String

e UTF-8encoded
e Allocated onthe heap
e Dynamically resizable, like "Vec’

Rust's String Library

Many Ways Of Getting A String’

let s1i

String:: from("string literal");

let s2 = x.to_string(); // If x's type impls “ToString’,
automatically impl ed if "Display 1s impl ed

let s3 = format!("concatenated {} and {}", s1, s2);

let s4 = String::from_utf8(vec![102, 111, 111]).unwrap();
let s5 = s1 + s2 + s3 + s4;

let s6 = s5.clone();

Standard Utilities: &str

‘len” (duh)

“split” based on a pattern (arbitrary numbers of multi-character groups)
“split_at” an index

"to_uppercase and 'to_lowercase’

Slice indexing thanks to the 'Index” and "IndexMut’ traits!
o letsubstr=¢s[5..10];
e See https://doc.rust-lang.org/std/primitive.str.html for full list

https://doc.rust-lang.org/std/primitive.str.html

Fancy Utilities: String

e pop last character

e push_str to append a new string
o '+ isoverloaded to this for String

e truncate astringto anew length
e Do everything an &str’ can do thanks to the "Deref trait!
e See https://doc.rust-lang.org/std/string/struct.String.html for full list

https://doc.rust-lang.org/std/string/struct.String.html

The FromStr trait

pub trait FromStr {

type Err;

fn from str(s: §str) — Result<Self, Self::Err>;
}

e Parsed struct cannot (safely) contain lifetimes: enforced by types!

Using the FromStr trait

// explicitly
let x1 = <i32 as FromStr>::from_str("42").unwrap();
// implicitly, through "str 's “parse method

let x2 = "42".parse::<i32>().unwrap();

e Pog! We just found a good use for the turbofish!

FFI String Types

For Compatibility With C:

e CString : Rust-owned string with no interior null bytes
o Encoding not changed from UTF-8
o Canuse "as_bytes_with_nul to get pointer to slice that ends with null terminator
o Important! Cannot own a string that was created in C code
e CStr': C-owned string being borrowed in Rust
o UTF-8 validation performed when converting to &str
o Convertible to/from raw pointer
o Aware of null terminator

e Requiresrealloc to add null terminator
e See https://doc.rust-lang.org/std/ffi/struct.CString.html and
https://doc.rust-lang.org/std/ffi/struct.CStr.html for full info

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html

Some CStr Methods

pub const fn as_ptr(&self) — =xconst c_char

pub unsafe fn from ptr<'a>(ptr: xconst c_char) — &'a
CStr

pub fn to_bytes with_nul(&self) — &[u8]
pub fn to_str(&self) — Result<&str, Utf8Error>
// No .len() function!!

For Compatibility With The OS:

e OSString': Rust-owned string, no interior null bytes, platform encoding

o Unix: assumed UTF-8
o Windows: UTF-16 but encoded as WTEF-8 for lossless conversion

o OSStr:

o Borrowed version of the above
e Neither are aware of null terminators! Use * CStr{ing} if you need that
e See https://doc.rust-lang.org/std/ffi/struct.OsString.html and

https://doc.rust-lang.org/std/ffi/struct.OsStr.html for full info

https://simonsapin.github.io/wtf-8/
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

Some OSStr Methods

pub fn
pub fn
pub fn
pub fn

// No

is ascii(&self) — bool
is_empty(&self) — bool
len(§self) — usize

to_str(&self) — Option<&str>

.to_bytes() function!

Paths

Paths Are Special Strings!

e Not all strings are valid paths though...

e Soclearly we need a new type for this!
o Worapper around OSString to enforce invariants

Owned version: "PathBuf" (like a “String’)
Borrowed version: "Path” (like a “str’)

Some Path Methods

pub fn
pub fn
pub fn
pub fn
pub fn

canonicalize(&self) — Result<PathBuf>
exists(&self) — bool

is dir(&self) — bool

is _file(&self) — bool

join<P: AsRef<Path>>(&self, path: P) — PathBuf

More "Fun" Traits

‘Deref’

pub trait Deref {

type Target: ?Sized;

fn deref(&self) — &Self::Target;
}

e Compiler will desugar “*v' into ‘Deref::deref(v)" when v : &T°

‘Deref’

pub trait Deref {

type Target: ?Sized;

fn deref(&self) — &Self::Target;
}

e Compiler will desugar “*v' into *Deref::deref(&v)’ if appropriate
e ?Sized':canbe a"type with a size not known at compile time", like a
slice type '[i32]

Deref Coercion

e Type coercion: done when desired type is explicitly labeled, and casting
would be lossless

o let x: 18 = 42; // 42 is an 132 literal, coerced to 18
o fn foo(x: i8) {}; foo(42) // same for function arguments

e Derefcoercionisasubset: ' &T or ‘&mut T can be coercedto &U if T
implements ‘Deref<Target = U>"

How This Is Used In std

impl Deref<Target=str> for String

impl Deref<Target=CStr> for CString

impl Deref<Target=0SStr> for 0SString

impl Deref<Target=Path> for PathBuf

impl Deref<Target=T> for &'_ T

TL;DR: If you want a function that takes in both "&str’ and "&String’,
you can just use "&str’ and all your references will be automatically
coerced!

How This Is Used In std

impl Deref<Target=str> for String

impl Deref<Target=CStr> for CString

impl Deref<Target=0SStr> for 0SString

impl Deref<Target=Path> for PathBuf

impl Deref<Target=T> for &'_ T

TL;DR: If you want a function that takes in both "&str’ and "&String’,
you can just use "&str’ and all your references will be automatically
coerced!

‘Borrow<Borrowed>’

pub trait Borrow<Borrowed> where Borrowed: ?Sized {

fn borrow(&self) — &Borrowed;

}

e Meant to be for wrapper types like ' Box<T> or 'Rc<T>" where a
reference to this acts exactly like a reference to the underlying type

e Requirements (not enforced by the compiler, by convention): "Eq’,
"Hash’, and "Ord’ implementations remain consistent

"AsRef<T>’

pub trait AsRef<T> where T: ?Sized {

fn as_ref(&self) — §T;
}

e |f T implements AsRef<U>", this means you can get an &U'" for cheap
froman &T°
e No other guarantees!

Comparing These Traits

Trait
Convert by

Informal
requirements

Conversion can fail?

Mutable Version

Deref
compiler magic

only for "smart
pointer”-like types

No

DerefMut

Borrow
.borrow()

only when returned
type has identical
behavior wrt
common traits

No

BorrowMut

AsRef
.as_ref()

can be done fairly
cheaply

No

AsMut

Homework

All Assignments So Far Due Friday

e Have agood spring break!

Backup: Case Study In
Encoding Errors

Not Just A Theoretical Issue

e https://github.com/tensorflow/tensorflow/issues/47022#issuecomment-93
9546658

e Tensorflow error: implicit whitespace splitting failed on certain unicode chars

>>> import tensorflow as tf

>>> tf.strings.split(["verita truth"], ' ')
<tf.RaggedTensor [[b'verit\xc3\xa@', b'truth']]>
>>> tf.strings.split(["verita truth"])
<tf.RaggedTensor [[b'verit\xc3']]>

https://github.com/tensorflow/tensorflow/issues/47022#issuecomment-939546658
https://github.com/tensorflow/tensorflow/issues/47022#issuecomment-939546658

This Algorithm Looks Correct, Yeah?

bool ConsumeNonWhitespace(StringPiecex s, StringPiecex val) {
const charx p = s—data();
const charx limit = p + s—size();
while (p < limit) {
const char c = %p;
if (isspace(c)) break;
p+t;

const size_t n = p - s—data();

if (n > 0) {
xval = StringPiece(s—data(), n);
s—>remove_prefix(n);
return true;

} else {
xval = StringPiece();
return false;

}

}

Well What If isspace Was Broken?

e Thisis exactly what happens on Windows-1252 codepage (default,
English)

e Python: strings are UTF-8

o "veritd" — bytes([0x76, 0x65, 0x72, 0x69, 0x74, 0xc3, 0xad])

e InWindows-1252:0xa0 is a non-breaking space, which does count as
whitespace!

e TherewasaUTF-8 specific "isspace’ somewhere else in the code, it just
wasn't used Imao

e "Fixed" by making Windows use UTF-8 locale for everything

https://en.wikipedia.org/wiki/Windows-1252
https://en.wikipedia.org/wiki/Non-breaking_space
https://github.com/tensorflow/tensorflow/issues/43559#issuecomment-886728179

Backup: Why We Can't Index
Individual Characters From
&str

Wait We Can't?

e Nope, thanks UTF-8

e What would we even index on?

o Individual bytes? Some aren't valid on their own
o Individual "scalar values" (single codepoints)? Some modify other scalars! Know as

combining characters, this is how Zalgo text works
o Grapheme clusters? Wayyy too hard to put in a standard library, there will be crates

for that
e Any default would exclude others, best to have first two as explicit

functions: “bytes()” and “chars()’

https://www.ncbi.nlm.nih.gov/staff/beck/charents/accents.html
https://www.zalgo.org/

But Slicing Still Works, Right?

It's not guaranteed to!

Slices are based on byte indexes

Will panic if slice starts/ends in the middle of a scalar value

All ASCII characters are 1 byte in UTF-8, so we don't notice this most of
the time

e See https://doc.rust-lang.org/stable/book/ch08-02-strings.html for a
more in-depth explanation

https://doc.rust-lang.org/stable/book/ch08-02-strings.html

