
Lec 7: Strings

Jack Duvall

The Classic

Strings Are Important

● Many things can only be represented as strings
○ Names

○ Descriptions

○ Addresses

● Human-readable

● "Just" a list of characters!

How To Represent Strings?

1. How to encode length?
● C, C++: implicitly with a NUL terminator
● Every Other Language Since: explicitly, with a length field

2. What's the size of each character?
● C, C++: at least 1 byte
● Rust: exactly 1 byte
● Java, C#: exactly 2 bytes

3. How are characters encoded?
● C, C++: lmao what's that
● Go, Python, Rust: UTF-8
● Java, C#: UTF-16

Length Encoding

Implicit Length Was A Mistake

● Invariant: string always ends with a special character call the "null
terminator"

● Violated if:
○ Buffer too small to contain string + terminator
○ null terminator overwritten with extra data

● O(n) to find length of string
● If invariant violated, trying to find length will cause a crash!

○ Very easy to violate these in user code with off-by-one errors

● Why we considered this at all: only 1 byte of overhead per string, data
register can be re-used for loop guard

Explicit Length

● Invariant: length field is how many character units are valid
○ Usually, this field is private from user code

● Violated if:
○ Library operations don't update the length correctly

● O(1) to find length of string

● Drawback:
○ 4 or 8 bytes of overhead per string

○ For C compatibility, need to have null terminator anyways.

Character Encodings

Relevant XKCD

https://xkcd.com/927/

https://xkcd.com/927/

Relevant Wikipedia Article

https://en.wikipedia.org/wiki/Mojibake

https://en.wikipedia.org/wiki/Mojibake

But! A Standard Has Won!

● UTF-8
○ Used by over 97% of all websites

○ Default system encoding on Linux and MacOs

● Reasons:
○ Full compatibility with ASCII, which was historically very popular

○ 8-bit units => generally faster than wider encodings

○ Still flexible enough to represent more characters than we could realistically need

How UTF-8 Works

● Each possible character assigned a Unicode "code point"
○ "a" = U+0061

○ "🂫" = U+1F0AB

● Binary value of

codepoint assigned

to "x"s in following

chart:

https://en.wikipedia.org/wiki/UTF-8

https://en.wikipedia.org/wiki/UTF-8

History And Competing Standards

● ASCII: American Standard Code for Information Interchange
○ Developed from 1963-1968 for computerized telegraphs

○ 7-bit units

○ Sorting numerically => sorting alphabetically!

○ Room for control characters

○ "On March 11, 1968, U.S. President Lyndon B. Johnson mandated that all computers

purchased by the United States Federal Government support ASCII"

● UTF-16
○ Unicode like UTF-8, but individual units are 2 bytes instead of 1

○ Not directly compatible with UTF-8

○ Pro: U+0000 to U+FFFF directly representable in 1 unit

C Supports All Standards

● … so long as they have a certain set of basic characters (English alphabet

+ numbers + some punctuation)

● and those basic characters take up exactly 1 byte

● and there's a NUL character with all zero bits to represent the end of

strings

● Nothing else is enforced!
○ No ordering (besides digits), no non-negativity, definitely no encoding standard

● Reasonable to have these constraints, unreasonable that these are the

only ones

C Literally Does Not Give A Darn

● String literals are compiled in, may not reflect encoding of system it

runs on

● Converting between encodings is entirely optional

● Specifying the encoding you want is implementation-dependent

● C++ inherits all these flaws
○ std::string doesn't have any specified encoding!

Rust Does Give A Darn

● All strings are valid UTF-8

● Built-in functionality to convert to/from UTF-16 for interfacing with

other languages

Rust's String Types

Borrowed String: `&str`

● Also called a "string slice"

● UTF-8 encoded

● Can refer to:
○ String literals in the program

○ Substrings of other strings

let x: &str = "Hello World";

let y: &str = &x[0..5];

Owned String: `String`

● UTF-8 encoded

● Allocated on the heap

● Dynamically resizable, like `Vec`

Rust's String Library

Many Ways Of Getting A `String`

let s1 = String::from("string literal");

let s2 = x.to_string(); // If x's type impls `ToString`,
automatically `impl`ed if `Display` is `impl`ed

let s3 = format!("concatenated {} and {}", s1, s2);

let s4 = String::from_utf8(vec![102, 111, 111]).unwrap();

let s5 = s1 + s2 + s3 + s4;

let s6 = s5.clone();

Standard Utilities: &str

● `len` (duh)

● `split` based on a pattern (arbitrary numbers of multi-character groups)

● `split_at` an index

● `to_uppercase` and `to_lowercase`

● Slice indexing thanks to the `Index` and `IndexMut` traits!
○ `let substr = s[5..10];`

● See https://doc.rust-lang.org/std/primitive.str.html for full list

https://doc.rust-lang.org/std/primitive.str.html

Fancy Utilities: String

● `pop` last character

● `push_str` to append a new string
○ `+` is overloaded to this for String

● `truncate` a string to a new length

● Do everything an `&str` can do thanks to the `Deref` trait!

● See https://doc.rust-lang.org/std/string/struct.String.html for full list

https://doc.rust-lang.org/std/string/struct.String.html

The `FromStr` trait

pub trait FromStr {

type Err;

fn from_str(s: &str) -> Result<Self, Self::Err>;

}

● Parsed struct cannot (safely) contain lifetimes: enforced by types!

Using the `FromStr` trait

// explicitly

let x1 = <i32 as FromStr>::from_str("42").unwrap();

// implicitly, through `str`'s `parse` method

let x2 = "42".parse::<i32>().unwrap();

● Pog! We just found a good use for the turbofish!

FFI String Types

For Compatibility With C:

● `CString`: Rust-owned string with no interior null bytes
○ Encoding not changed from UTF-8
○ Can use `as_bytes_with_nul` to get pointer to slice that ends with null terminator
○ Important! Cannot own a string that was created in C code

● `CStr`: C-owned string being borrowed in Rust
○ UTF-8 validation performed when converting to &str
○ Convertible to/from raw pointer
○ Aware of null terminator

● Requires realloc to add null terminator
● See https://doc.rust-lang.org/std/ffi/struct.CString.html and

https://doc.rust-lang.org/std/ffi/struct.CStr.html for full info

https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html

Some `CStr` Methods

pub const fn as_ptr(&self) -> *const c_char

pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a
CStr

pub fn to_bytes_with_nul(&self) -> &[u8]

pub fn to_str(&self) -> Result<&str, Utf8Error>

// No .len() function!!

For Compatibility With The OS:

● `OSString`: Rust-owned string, no interior null bytes, platform encoding
○ Unix: assumed UTF-8

○ Windows: UTF-16 but encoded as WTF-8 for lossless conversion

● `OSStr`:
○ Borrowed version of the above

● Neither are aware of null terminators! Use ` CStr{ing}` if you need that

● See https://doc.rust-lang.org/std/ffi/struct.OsString.html and

https://doc.rust-lang.org/std/ffi/struct.OsStr.html for full info

https://simonsapin.github.io/wtf-8/
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html

Some `OSStr` Methods

pub fn is_ascii(&self) -> bool

pub fn is_empty(&self) -> bool

pub fn len(&self) -> usize

pub fn to_str(&self) -> Option<&str>

// No .to_bytes() function!!

Paths

Paths Are Special Strings!

● Not all strings are valid paths though…

● So clearly we need a new type for this!
○ Wrapper around OSString to enforce invariants

● Owned version: `PathBuf` (like a `String`)

● Borrowed version: `Path` (like a `str`)

Some `Path` Methods

pub fn canonicalize(&self) -> Result<PathBuf>

pub fn exists(&self) -> bool

pub fn is_dir(&self) -> bool

pub fn is_file(&self) -> bool

pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf

More "Fun" Traits

`Deref`

pub trait Deref {

type Target: ?Sized;

fn deref(&self) -> &Self::Target;

}

● Compiler will desugar `*v` into `Deref::deref(v)` when `v : &T`

`Deref`

pub trait Deref {

type Target: ?Sized;

fn deref(&self) -> &Self::Target;

}

● Compiler will desugar `*v` into `*Deref::deref(&v)` if appropriate

● `?Sized`: can be a "type with a size not known at compile time", like a

slice type `[i32]`

Deref Coercion

● Type coercion: done when desired type is explicitly labeled, and casting

would be lossless
○ let x: i8 = 42; // 42 is an i32 literal, coerced to i8
○ fn foo(x: i8) {}; foo(42) // same for function arguments

● Deref coercion is a subset: `&T` or `&mut T` can be coerced to `&U` if `T`

implements `Deref<Target = U>`

How This Is Used In `std`

● impl Deref<Target=str> for String
● impl Deref<Target=CStr> for CString
● impl Deref<Target=OSStr> for OSString
● impl Deref<Target=Path> for PathBuf
● impl Deref<Target=T> for &'_ T
● TL;DR: If you want a function that takes in both `&str` and `&String`,

you can just use `&str` and all your references will be automatically

coerced!

How This Is Used In `std`

● impl Deref<Target=str> for String
● impl Deref<Target=CStr> for CString
● impl Deref<Target=OSStr> for OSString
● impl Deref<Target=Path> for PathBuf
● impl Deref<Target=T> for &'_ T
● TL;DR: If you want a function that takes in both `&str` and `&String`,

you can just use `&str` and all your references will be automatically

coerced!

`Borrow<Borrowed>`

pub trait Borrow<Borrowed> where Borrowed: ?Sized {

fn borrow(&self) -> &Borrowed;

}

● Meant to be for wrapper types like `Box<T>` or `Rc<T>` where a

reference to this acts exactly like a reference to the underlying type

● Requirements (not enforced by the compiler, by convention): `Eq`,

`Hash`, and `Ord` implementations remain consistent

`AsRef<T>`

pub trait AsRef<T> where T: ?Sized {

fn as_ref(&self) -> &T;

}

● If `T` implements `AsRef<U>`, this means you can get an `&U` for cheap

from an `&T`

● No other guarantees!

Comparing These Traits

Trait Deref Borrow AsRef

Convert by compiler magic .borrow() .as_ref()

Informal
requirements

only for "smart
pointer"-like types

only when returned
type has identical
behavior wrt
common traits

can be done fairly
cheaply

Conversion can fail? No No No

Mutable Version DerefMut BorrowMut AsMut

Homework

All Assignments So Far Due Friday

● Have a good spring break!

Backup: Case Study In
Encoding Errors

Not Just A Theoretical Issue

● https://github.com/tensorflow/tensorflow/issues/47022#issuecomment-93
9546658

● Tensorflow error: implicit whitespace splitting failed on certain unicode chars

>>> import tensorflow as tf

>>> tf.strings.split(["verità truth"], ' ')

<tf.RaggedTensor [[b'verit\xc3\xa0', b'truth']]>

>>> tf.strings.split(["verità truth"])

<tf.RaggedTensor [[b'verit\xc3']]>

https://github.com/tensorflow/tensorflow/issues/47022#issuecomment-939546658
https://github.com/tensorflow/tensorflow/issues/47022#issuecomment-939546658

This Algorithm Looks Correct, Yeah?
 bool ConsumeNonWhitespace(StringPiece* s, StringPiece* val) {
 const char* p = s->data();
 const char* limit = p + s->size();
 while (p < limit) {
 const char c = *p;
 if (isspace(c)) break;
 p++;
 }
 const size_t n = p - s->data();
 if (n > 0) {
 *val = StringPiece(s->data(), n);
 s->remove_prefix(n);
 return true;
 } else {
 *val = StringPiece();
 return false;
 }
 }

Well What If `isspace` Was Broken?

● This is exactly what happens on Windows-1252 codepage (default,

English)

● Python: strings are UTF-8
○ "verità" -> bytes([0x76, 0x65, 0x72, 0x69, 0x74, 0xc3, 0xa0])

● In Windows-1252: 0xa0 is a non-breaking space, which does count as

whitespace!

● There was a UTF-8 specific `isspace` somewhere else in the code, it just

wasn't used lmao

● "Fixed" by making Windows use UTF-8 locale for everything

https://en.wikipedia.org/wiki/Windows-1252
https://en.wikipedia.org/wiki/Non-breaking_space
https://github.com/tensorflow/tensorflow/issues/43559#issuecomment-886728179

Backup: Why We Can't Index
Individual Characters From

&str

Wait We Can't?

● Nope, thanks UTF-8

● What would we even index on?
○ Individual bytes? Some aren't valid on their own

○ Individual "scalar values" (single codepoints)? Some modify other scalars! Know as

combining characters, this is how Zalgo text works

○ Grapheme clusters? Wayyy too hard to put in a standard library, there will be crates

for that

● Any default would exclude others, best to have first two as explicit

functions: `bytes()` and `chars()`

https://www.ncbi.nlm.nih.gov/staff/beck/charents/accents.html
https://www.zalgo.org/

But Slicing Still Works, Right?

● It's not guaranteed to!

● Slices are based on byte indexes

● Will panic if slice starts/ends in the middle of a scalar value

● All ASCII characters are 1 byte in UTF-8, so we don't notice this most of

the time

● See https://doc.rust-lang.org/stable/book/ch08-02-strings.html for a

more in-depth explanation

https://doc.rust-lang.org/stable/book/ch08-02-strings.html

