
Error Handling and Advanced
Testing
after all, you need some way to deal with buggy
code!

Jack Duvall

Outline

1 Error Handling

2 Panics

3 Testing

4 Property-Based Testing And Fuzzing

5 Homework

Jack Duvall Error Handling and Advanced Testing 17th March 2022 1 / 47

Outline

1 Error Handling

2 Panics

3 Testing

4 Property-Based Testing And Fuzzing

5 Homework

Jack Duvall Error Handling and Advanced Testing 17th March 2022 2 / 47

In General: Ways Of Signaling Errors
Error Return Codes: Function returns a special value to notify caller that it
didn’t complete successfully.
Exceptions: Abnormal return path, propogating up callstack until a special
exception handler catches it.
Signals/Panics: Program immediately interrupted at the request of the OS,
usually leads to termination due to severity.

Jack Duvall Error Handling and Advanced Testing 17th March 2022 3 / 47

Exceptions Considered Harmful
How can you guarantee that calling function won’t throw an exception?

SML: Exceptional control flow built into the type, see letcc.
C++: Function can optionally be annotated with noexcept keyword
Most Other Languages With Exceptions (Python, Java, etc.): Sorry bro ur
out of luck, read the docs ig

How do you release resources if an exception is thrown?
Garbage collected languages: same as usual
C++: Need to treat every non-noexcept function like it could throw and add
code to clean up local resources if it does

Jack Duvall Error Handling and Advanced Testing 17th March 2022 4 / 47

What Do Exceptions Really Do, Anyways?
Return early from a function
Let the caller know the operation didn’t succeed
Propogate through layers of the stack
Stop the program if not handled somewhere

Jack Duvall Error Handling and Advanced Testing 17th March 2022 5 / 47

This Can Be Done With Types!
Rust’s approach: return type encodes both success and failure possibilities

enum Result<V, E> {
Ok(V),
Err(E),

}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 6 / 47

We Have Cool Syntax, Too
The ? operator is very nice.

let x = returns_result()?;

will de-sugar to

let x = match returns_result() {
Ok(v) => v,
Err(e) => return Err(e),

}

Note this means you can only use ? inside a function that also returns a
Result<V, E2> where E2 impl From<E>.

Jack Duvall Error Handling and Advanced Testing 17th March 2022 7 / 47

Society If We Didn’t Have ?
fn parse_input1(s: &str)
-> Result<(i32, i32), std::num::ParseIntError> {

let v = s.split(" ").collect::<Vec<_>>();
match v[0].parse::<i32>() {

Ok(a) => match v[1].parse::<i32>() {
Ok(b) => Ok((a, b)),
Err(e) => Err(e),

},
Err(e) => Err(e),

}
}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 8 / 47

Society Because We Have ?
fn parse_input2(s: &str)
-> Result<(i32, i32), std::num::ParseIntError> {

let mut v = s.split(" ").collect::<Vec<_>>();
let a = v[0].parse::<i32>()?;
let b = v[1].parse::<i32>()?;
Ok((a, b))

}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 9 / 47

Why This Is Better Than Exceptions
It’s always explicit if a function can fail or not! Literally in the return type

? operator lets you know all the places a short-circuit return could happen
Must manually pattern match on the Result to check both cases
More code generated, similar to C++

The type of the function constraints possible failures. If it’s not a Result type,
the function will always succeed when it returns!

But, are we guaranteed that a function will return?

Jack Duvall Error Handling and Advanced Testing 17th March 2022 10 / 47

Outline

1 Error Handling

2 Panics

3 Testing

4 Property-Based Testing And Fuzzing

5 Homework

Jack Duvall Error Handling and Advanced Testing 17th March 2022 11 / 47

Main Classes Of Panics In Rust
Integer Overflow (debug mode only)
Out-of-bounds slice index
Any panic! statement

Jack Duvall Error Handling and Advanced Testing 17th March 2022 12 / 47

Integer Overflow Panics
Raised whenever an operation would result in value outside bounds of type

u64::MAX + 98
i32::MIN * -1

Only checked in debug builds; release builds will use 2’s complement wrapping,
usually provided by the hardware
Divide by zero always panics

Jack Duvall Error Handling and Advanced Testing 17th March 2022 13 / 47

Explicitly Allowing Integer Overflow
You can manually use wrapping functions directly on the type:

assert_eq!(255u8.wrapping_add(5u8), 4u8);

Or, use a transparent Wrapping<T> struct that has std::ops::Add and such
implemented for all numeric T:

assert_eq!(Wrapping(255u8) + Wrapping(5u8), Wrapping(4u8));

This wrapper is zero-cost thanks to #[repr(transparent)]

Jack Duvall Error Handling and Advanced Testing 17th March 2022 14 / 47

What About Floating Point?
What about floating point? :)
All floating point errors result in inf or NaN values, which can be checked with
.is_inf() or .is_nan() if necessary.
This is IEEE 754 compliant, fortunately they realized that crashing due to zero division
wasn’t the best option in all cases :)

Jack Duvall Error Handling and Advanced Testing 17th March 2022 15 / 47

Out-Of-Bounds Panics
fn main() {

let x = [1, 2, 3];
println!("{}", x[99]);

}

If this was written in C, what would this code do?
Logically, what should this code do?
Fun note: simple “unconditional panics” like this are detected at compile time

Jack Duvall Error Handling and Advanced Testing 17th March 2022 16 / 47

The panic! Statement
Use this when you purposely want to cause a panic

Detect extremely unexpected conditions that would nevertheless result in an error
Enforce invariants when creating structure or calling function

struct Bounded<const LOW: usize, const HIGH: usize>(usize);
impl<const LOW: usize, const HIGH: usize> Bounded<LOW, HIGH> {

fn new(x: usize) -> Self {
if !(LOW <= x && x <= HIGH) {

panic!("{x} was not in the range [{LOW}, {HIGH}]!");
}
Self(x)

}
}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 17 / 47

Friends of the panic! Statement
assert!, assert_eq!, and assert_ne! for condition panics if invariants not met
debug_* versions of the above for asserts that only happen during debug builds
todo! to signal code isn’t finished yet
unimplemented! to signal code will not be implemented
unreachable! to signal to the compiler that it can optimize away this
branch/check. Use very judiciously!

So many flavors to choose from! yummy

Jack Duvall Error Handling and Advanced Testing 17th March 2022 18 / 47

Outline

1 Error Handling

2 Panics

3 Testing

4 Property-Based Testing And Fuzzing

5 Homework

Jack Duvall Error Handling and Advanced Testing 17th March 2022 19 / 47

The #[test] Annotation
This is a compiler macro, marking a function defined anywhere in a crate to be run as
part of a test suite during cargo test

#[test]
fn test1() {

assert_eq!(9 + 10, 21);
}

Tests pass if they run to completion without panicking; conversely, panics signal test
failure.

Jack Duvall Error Handling and Advanced Testing 17th March 2022 20 / 47

Using #[test] With Results
This is a thing you can do!

#[test]
fn test2() -> Result<(), String> {

Err("oh no! my test! it's broken!".to_string())
}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 21 / 47

What cargo test Looks Like When This Is Run
running 2 tests
test test2 ... FAILED
test test1 ... FAILED
failures:
---- test2 stdout ----
Error: "oh no! my test! it's broken!"
thread 'test2' panicked at 'assertion failed: `(left == right)`
left: `1`,
right: `0`: the test returned a termination value with a non-zero status code (1) which indicates a failure', /rustc/9d1b2106e23b1abd32fce1f17267604a5102f57a/library/test/src/lib.rs:186:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
---- test1 stdout ----
thread 'test1' panicked at 'assertion failed: `(left == right)`
left: `19`,
right: `21`', src/lib.rs:3:5

Jack Duvall Error Handling and Advanced Testing 17th March 2022 22 / 47

Sometimes, You #[should_panic]
You can use this annotation to test for error cases where you expect panics:

#[test]
#[should_panic]
fn test3() {

let x: u64 = None.unwrap();
}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 23 / 47

Recommended Practice: Making A “Test
Module”
#[cfg(test)]
mod test {

use super::*;
#[test]
fn test1() { ... }

}

Why? Test functions shouldn’t be used in other code (because they could panic),
so if not compiled with cargo test, these test functions will generate “unused
function” warnings.
Adding #[cfg(test)] makes the entire module and all functions inside only ever
defined in test mode, easier than annotating all of them.

Jack Duvall Error Handling and Advanced Testing 17th March 2022 24 / 47

Things You Generally Want To Test
Simple cases that work as expected (“unit testing”)
Edge cases handled gracefully
Serialization/deserialization is invertible
Internally/externally asserted invariants hold

There’s a whole field about Test Driven Development and other best testing practices
and I don’t really know enough to say much confidently on this subject :P

Jack Duvall Error Handling and Advanced Testing 17th March 2022 25 / 47

Upgrading To cargo nexttest
From the cargo-nexttest binary crate, install with
cargo install cargo-nexttest or put a binary release in your path
Runs tests in parallel, nicer interface
Allows checking for flaky tests

Flaky test: test that sometimes succeeds, sometimes fails (!)
Yes, this does mean Rust doesn’t solve all ur software dev woes

See docs at https://nexte.st/index.html

Jack Duvall Error Handling and Advanced Testing 17th March 2022 26 / 47

https://nexte.st/index.html

Outline

1 Error Handling

2 Panics

3 Testing

4 Property-Based Testing And Fuzzing

5 Homework

Jack Duvall Error Handling and Advanced Testing 17th March 2022 27 / 47

What Are Those??
Property-Based Testing: given arbitrary input satisfying certain properties, test
that the output will satisfy certain properties as well

Requires a way of describing the input properties
Frameworks usually have a way of “simplifying” crashing input to a minimal crashing
test case

Fuzzing: test that code doesn’t crash on all possible traces through code paths
Requires some way of enumerating code paths, usually has to be done after
compilation that may optimize some braches away

Very similar concepts! Both deal with somewhat arbitrary inputs, have “panic
means test failure”

Jack Duvall Error Handling and Advanced Testing 17th March 2022 28 / 47

Crates for Property-Based Testing
proptest

Inspired by Hypothesis (Python)
Can make different input ranges/properties per-value

quickcheck
Inspired by QuickCheck (Haskell)
Can make different input ranges/properties per-type, often leads to a lot of wrapper
types

bolero
More fuzzing-like, also has generators similar to quickcheck

Note: I have not used any of these :P

Jack Duvall Error Handling and Advanced Testing 17th March 2022 29 / 47

https://hypothesis.readthedocs.io/en/latest/index.html
https://hackage.haskell.org/package/QuickCheck

proptest Example With Strategy Chaining
proptest! {

fn grade_range() -> impl Strategy<Value = (u8, u8)>> {
(0..=100, 0..=100)

.prop_filter("need min<=max", |(min, max)| min<=max)

.prop_map(|(min, max)| Range { min, max })
}
#[test]
fn test_create_distribution(range in grade_range()) {

let dist: Result<_> = create_distribution(range);
prop_assert!(dist.is_ok());

}
}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 30 / 47

proptest Example With String Regexes
proptest! {

#[test]
fn test_i32_parse_err(s in "[^0-9]+") {

let x = s.parse::<i32>();
prop_assert!(x.is_err());

}
}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 31 / 47

Crates For Fuzzing
cargo-fuzz: based on LLVM’s LibFuzzer
afl: relies on ”American Fuzzy Lop”, and old yet popular fuzzing library
bolero: supports both those backends, plus Honggfuzz

All of these are x86_64 Linux or x86_64 MacOs only, and need Rust nightly features
enabled :(

Jack Duvall Error Handling and Advanced Testing 17th March 2022 32 / 47

Outline

1 Error Handling

2 Panics

3 Testing

4 Property-Based Testing And Fuzzing

5 Homework

Jack Duvall Error Handling and Advanced Testing 17th March 2022 33 / 47

Error Handling Puzzle
There will be different functions returning different errors, handle them all!
This will use things you know about traits, standard library, general Rust syntax

And it’s OK to look these things up too!

Jack Duvall Error Handling and Advanced Testing 17th March 2022 34 / 47

Backup: Why Panic When We Have
Result?

Jack Duvall Error Handling and Advanced Testing 17th March 2022 35 / 47

Some Moral Reasons
Sometimes, it’s just really obnoxious

Having to check every single addition for overflow?
Every single allocation?
C/C++ people be like: ya ofc (or maybe not)
miss me with that tyvm

Sometimes, the error state is so irrecoverable that we shouldn’t bother handling
anyways

Allocations are usually a good example
When do you actually run out of memory on a modern system?

Some of Rust’s panics are ugly though (on indexing? really?) and libraries
sometimes over-use imo
See the official Rust Book section for a more balanced view

Jack Duvall Error Handling and Advanced Testing 17th March 2022 36 / 47

https://doc.rust-lang.org/book/ch09-03-to-panic-or-not-to-panic.html

Panics Are Sometimes Proved Away
The following code will (should, really) not have a panic check:

fn main() {
let x = vec![1, 2, 3, 4];
println!("{}", x[3]);

}

This isn’t a feature of Rust, but rather a feature of LLVM, so relying on this can be
fickle.

Jack Duvall Error Handling and Advanced Testing 17th March 2022 37 / 47

Not Actually A Reason: Runtime Cost
Both panics and Results need to be checked for!

panic: if condition doesn’t hold, jump to panic handler (often there are a bunch
with different source info and messages and stuff)
Result: branch depending on whether its Ok or Err.

Sometimes, all these extra panic handlers can result in more code than Results!
[citation needed]

Jack Duvall Error Handling and Advanced Testing 17th March 2022 38 / 47

Backup: The Try Trait

Jack Duvall Error Handling and Advanced Testing 17th March 2022 39 / 47

So How Does ? Work, Exactly?
What does it “desugar” to?
Can I add more types for it to work with?
Unfortunately we can’t answer either of these questions: currently, it’s an internal
compiler operation, only for Option and Result types
This is different from nearly ever other operator! + and >> and | have overloads,
even Deref!

Jack Duvall Error Handling and Advanced Testing 17th March 2022 40 / 47

Motivating Example: A Neat Type
A proposed type that ? could work with:

enum ControlFlow<B, C = ()> {
/// Exit the operation without running subsequent phases.
Break(B),
/// Move on to the next phase of the operation as normal.
Continue(C),

}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 41 / 47

Motivating Example: Some Clean Code
impl<T> TreeNode<T> {

fn traverse_inorder(
&self,
mut f: impl FnMut(&T) -> ControlFlow,

) -> ControlFlow {
if let Some(left) = &self.left {

left.traverse_inorder(&mut f)?;
}
f(&self.value)?;
if let Some(right) = &self.right {

right.traverse_inorder(&mut f)?;
}
ControlFlow::Continue(())

}
}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 42 / 47

Terminology
At its core, the ? operator is about splitting a type and control flow into two parts:

The output that will be returned from the ?, where control flow continues as
normal, and
The residual that will be returned to calling code, as an early exit from the
normal flow.

Source for all this: https://rust-lang.github.io/rfcs/3058-try-trait-v2.html

Jack Duvall Error Handling and Advanced Testing 17th March 2022 43 / 47

https://rust-lang.github.io/rfcs/3058-try-trait-v2.html

Try Is Actually Two Traits
trait FromResidual<Residual = <Self as Try>::Residual> {

fn from_residual(r: Residual) -> Self;
}
trait Try: FromResidual {

type Output;
type Residual;
fn branch(self) -> ControlFlow<Self::Residual, Self::Output>;
fn from_output(o: Self::Output) -> Self;

}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 44 / 47

Why Have Two Traits?
This allows the residual of one erroring type to easily be turned into another output
error type, without also having to convert the outputs! Probably a common usecase:

impl<T, E: From<String>> FromResidual<ResultCodeResidual> for
Result<T, E> {

fn from_residual(r: ResultCodeResidual) -> Self {
Err(format!(

"Something fancy about {} at {:?}",
r.0,
std::time::SystemTime::now()

).into())
}

}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 45 / 47

Formalizing Desugaring: Sugared
fn<T1, T2> f(g: impl FnOnce() -> T2) -> T1

where T1: Try,
T2: FromResidual<T1::Residual>

{
let x = g();
let y = x?;
...

}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 46 / 47

Formalizing Desugaring: Desugared
fn<T1, T2> f(g: impl FnOnce() -> T2) -> T1

where T1: Try,
T2: FromResidual<T1::Residual>

{
let x = g();
let y = match T1::branch(x) {

ControlFlow::Continue(c) => c,
ControlFlow::Break(b) => { return T2::from_residual(b) }

};
...

}

Jack Duvall Error Handling and Advanced Testing 17th March 2022 47 / 47

	Error Handling
	Panics
	Testing
	Property-Based Testing And Fuzzing
	Homework

