
Miscellaneous Cool Stuff
“The problem with going faster than light is that
you live in darkness”

Jack Duvall



Course Summary
Structs, Enums, Pattern matching, Traits
Function Types, Ownership, Borrowing
Polymorphism
Crates and Modules
Standard Library
Error handling, Testing
Macros
Unsafe
Parallelism (threads), Concurrency (async/await)

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 1 / 28



Outline

1 Making Async Code Sync

2 Async Traits

3 #![no_std]

4 Const Generics

5 const fn

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 2 / 28



Outline

1 Making Async Code Sync

2 Async Traits

3 #![no_std]

4 Const Generics

5 const fn

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 3 / 28



Why Would You Want To Do This?
(Recall: sync code can be made async with tokio::spawn_blocking)

Having your top-level function be async isn’t the best, sometimes you want to
architecture your own event loop for GUI things

Before, we just used the #[tokio::main] macro. What does that expand do/can we
do it ourselves?

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 4 / 28



Doing What #[tokio::main] Does
fn main() {

tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap()
.block_on(async {

println!("Hello world");
})

}

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 5 / 28



Manual Expansion Gives More Power
Change parameters of the runtime.
Spawn multiple futures onto runtime at once, without join!
Run futures ”in background”, while running other sync code

See The Tokio Docs for lots of code examples

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 6 / 28

https://tokio.rs/tokio/topics/bridging


Outline

1 Making Async Code Sync

2 Async Traits

3 #![no_std]

4 Const Generics

5 const fn

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 7 / 28



You Can’t Have async fn In Traits (right now)
trait Webserver {

async fn handle(&self, r: Request) -> Response;
}

Too bad Rust doesn’t like this... Why?
Short Answer: async fn only guarantees a trait, not a type
Long Answer: mostly stolen from Niko Matsakis’ Blog

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 8 / 28

https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/


async fn Is Syntatic Sugar For This
trait Webserver {

fn handle(&self, r: Request) ->
impl Future<Output = Response> + '_;

}

...roughly speaking, that is

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 9 / 28



It Gets Funkier
trait Webserver {

type HandleFuture<'a>: Future<Output = Response> + 'a;
fn handle(&'a self, r: Request) -> Self::HandleFuture<'a>;

}

This is a “Generic Associated Type”, not supported in Rust yet, no concrete plans

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 10 / 28



More Unresolved Questions
Even if GATs were solved, what if you wanted to constrain futures returned by an
implementation?

fn launch_on_multiple_threads<W>(webserver: W)
where for<'a> W::HandleFuture<'a>: Send
{

// `Send` lets us share futures returned by
// `webserver.handle(r)` between threads

}

We needed to know the name of the associated type. Is it auto-generated? Or do
people need to desugar manually?
If you use a lot of futures, there’s a lot more Send bounds you need; is there a
better way to combine them all?

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 11 / 28



Even More Considerations
If you use regular generics, many copies of code are made. Could be better to force the
use of trait objects:

trait Webserver {
fn handle(&self, r: Request) ->

dyn Future<Output = Response> + '_;
}

New problem: now the return type isn’t Sized (don’t know the size at compile time),
so we can’t generate code! Need a wrapper, but how to choose between Box, Arc,
others?

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 12 / 28



A Good Enough Solution: async-trait Crate
Applying #[async_trait] to the original trait with an async fn results in the
following desugaring:

trait Webserver {
fn handle(&self, r: Request) ->

Pin<Box<dyn Future<Output=Response> + Send + '_>>;
}

mm delicous type + trait soup

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 13 / 28



Outline

1 Making Async Code Sync

2 Async Traits

3 #![no_std]

4 Const Generics

5 const fn

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 14 / 28



What’s In The Standard Library?
Option, Result, integer types
Iterator, Default, From
String, Vec, Box, Arc, Allocation
Platform Intrinsics (std::arch::x86_64::__cpuid)
Filesystem abstractions
Futures
HashMap
Networking
Threads

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 15 / 28



Rust Can Be A “Portable Assembler” Too!
It is possible to write code without the standard library! Really, it’s split into two parts:

std: All the “fancy” stuff
core: Only the stuff you actually need to write Rust

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 16 / 28



What’s In The Core Library?
Option, Result, integer types
Iterator, Default, From
Platform Intrinsics
Futures
Types + traits for everything else that makes sense

Hash trait, no HashMap
Debug trait, no default formatter

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 17 / 28



Why Would You Ever Do This?
Embedded Systems!
Write An Operating System!
Write A Library People Would Use For The Above Projects!

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 18 / 28



This Table Puts It Nicely

Image credit: https://docs.rust-embedded.org/book/intro/no-std.html
Jack Duvall Miscellaneous Cool Stuff 28th April 2022 19 / 28

https://docs.rust-embedded.org/book/intro/no-std.html


Outline

1 Making Async Code Sync

2 Async Traits

3 #![no_std]

4 Const Generics

5 const fn

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 20 / 28



The Past, A Tale Of Woe
Before const generics: the array type [T; N] is the only type that can have a number
in it!
Problem: Array methods weren’t implemented for arrays larger than 32!
Why? Rust compiler didn’t let us implement traits that were “generic over values”,
and traits are the only way to get associated functions!

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 21 / 28



Today, Living In The Future
We can have user-defined types and traits that are generic over integer values!

struct ArrayPair<T, const N: usize> {
left: [T; N],
right: [T; N],

}
impl<T: Debug, const N: usize> Debug for ArrayPair<T, N> {

// ...
}

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 22 / 28



The Future’s Future, Even Better
https://blog.rust-lang.org/inside-rust/2021/09/06/Splitting-const-generics.html

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 23 / 28

https://blog.rust-lang.org/inside-rust/2021/09/06/Splitting-const-generics.html


Outline

1 Making Async Code Sync

2 Async Traits

3 #![no_std]

4 Const Generics

5 const fn

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 24 / 28



We Have Compile-Time Evaluation Too!
https://doc.rust-lang.org/reference/const_eval.html
const context: Array length, const/static/enum discriminant, const generic argument
Only certain compile-time-evaluable operations permitted inside these; turns out
there’s quite a lot! Besides the obvious, also have:

Block expressions (unsafe), if, match
Array indexing
Borrows, dereferencing

and more!
const fn are functions made up of only these, enforced by the compiler, also callable
from const contexts

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 25 / 28

https://doc.rust-lang.org/reference/const_eval.html


A Bit Uncontrollable
Not always guaranteed that const context or const fn will be evaluated at
compile time, only that it can
Plenty of strange rules
const fn is restrictive in terms of ABI compatability: need to make sure function
will stay const in the future

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 26 / 28



Fun With Rust's Type System!

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 27 / 28



It’s Turing Complete!
https://sdleffler.github.io/RustTypeSystemTuringComplete/

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 27 / 28

https://sdleffler.github.io/RustTypeSystemTuringComplete/


It’s A Little Unsound!
https://counterexamples.org/eventually-nothing.html#eventually-nothing
https://counterexamples.org/nearly-universal.html#nearly-universal-quantification
https://counterexamples.org/mutable-matching.html#mutable-matching

Jack Duvall Miscellaneous Cool Stuff 28th April 2022 28 / 28

https://counterexamples.org/eventually-nothing.html#eventually-nothing
https://counterexamples.org/nearly-universal.html#nearly-universal-quantification
https://counterexamples.org/mutable-matching.html#mutable-matching

	Making Async Code Sync
	Async Traits
	#![nostd]
	Const Generics
	const fn

